Next:
1 General introduction
Up:
Kenji Kojima's Ph.D. Thesis
Previous:
Kenji Kojima's Ph.D. Thesis
Contents
Contents
1 General introduction
1.1 Antiferromagnetic spin systems without Néel order
1.1.1 An overview of singlet ground state systems
1.1.2 The idea of the measurements in this thesis
2 The muon spin rotation/relaxation (
SR) technique
2.1 The basics
2.2 Experimental setup for the
SR technique
2.2.1 Production of a muon beam
2.2.2
SR spectrometer
2.2.3 Electronics and data handling
2.2.4 Counter/muon spin geometries
3 Spin relaxation theories
3.1 Gaussian Kubo-Toyabe theory [#!Toyabe66!#,#!KuboToyabe67!#,#!HayanoPRB79!#]
3.2 Lorentzian theory [#!UemuraPRB85!#]
3.3 A minor correction to the Lorentzian theory
3.4 Summary of the Kubo-Toyabe theories
4 Spin-ladder system
4.1 Introduction
4.2 Spin-ladder material Sr
n
-1
Cu
n
+1
O
2
n
4.3
SR measurements
4.3.1 The 3-leg ladder material (
n
=5)
4.3.2 The 2-leg ladder material (
n
=3)
4.4 Summary
5 Haldane system
5.1 Introduction
5.1.1 Haldane's prediction
5.1.2 The Valence-Bond-Solid Hamiltonian
5.1.3 Physical Hamiltonians
5.1.4 Experimental evidence for Haldane's conjecture
5.2 Haldane material Y
2
BaNiO
5
5.2.1 Susceptibility measurements
5.2.2
SR measurements
6.2.4 Discussion
5.3 Summary
6 Spin-Peierls system
6.1 Introduction
6.1.1 Theories
6.1.2 Organic spin Peierls materials
6.2 Spin-Peierls material CuGeO
3
6.2.1 Previous measurements
6.2.2 Non-magnetic ion doping
6.2.3
SR measurements
Discussion
6.3 Summary
7 Concluding remarks
A Appendix
A.1 Extended Lieb-Shultz-Mattis Theorem [#!ALLMP86!#]
A.2 The 10/3 effect [#!AndersonRMP53!#,#!KuboTomitaJPSJ54!#]
A.3 Relaxation function in Néel state with randomness
References