
The Finite Square Well
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Solutions of the time-independent Schrödinger Equation
for a finite square well potential,

− h̄2

2m

∂2ψ

∂x2
+ V (x)ψ = Eψ , V (x) =

{

−V◦, |x| ≤ L
2

0, |x| > L
2

(1)
reveal many of the qualitative characteristics of quantum
mechanical (QM) systems.

THINK FIRST! The first step in any problem is to gather together all your qualitative knowledge
about the situation before you start working out any quantitative details. This is especially true
in QM, where the “blind calculation” approach is often not only a waste of effort but actually
intractable!

SYMMETRY: In this case we save ourselves a mind-bogglingly difficult mathematical nightmare
by making a few simple observations about symmetry: the potential V (x) is symmetric about
x = 0; this implies that the probability of finding the particle on one side of the well must be
equal to the probability of finding it on the other side. Since the wavefunction ψ(x) is squared to
get this probability, it follows that ψ(x) can be either an even function of x [ψ(−x) = ψ(x)] or an
odd function of x [ψ(−x) = −ψ(x)]. This places lots of constraints on ψ(x) for which we will soon
be grateful.

BOUND or UNBOUND? A potential well generally has bound states of well-defined energy
E < 0 unless the mass is too small (see below). There is also a continuum of unbound states with
E > 0, whose behaviour we may also want to examine. [For instance, the classical particle will
“pass over” the well and continue on the other side every time; this will not be the case for the
QM result!] We will start with the bound state (E < 0). If ψ(x) is localized around the potential
well, then to be normalizable it must obey ψ(x) −→

|x|→∞ 0. [Moreover, we certainly expect ψ → 0
as we get further into regions where the classical particle cannot penetrate at all due to its
inadequate energy!] Our first guess for such functions is always the decaying exponential function,

here ψ1 (x) = Aeαx (2) for region 1
(

−∞ < x < −L
2

)

. [Remember, x = −|x| in this region.]

Since we are always free to choose the overall phase of ψ(x) arbitrarily [multiplying by a constant
factor of eiφ has no effect on the physics], we may do so immediately by choosing that

A is real and positive . In this case the
{

even
odd

}

symmetry requirement gives two possible

solutions for region 3
(

L
2
< x <∞

)

: ψ3± (x) = ±Ae−αx where the + sign is for the symmetric

(even) solution and the − sign is for the antisymmetric (odd) solution.

On region 2
(

−L
2
< x < L

2

)

we expect some sort of oscillatory function, for which the obvious
{

even
odd

}

choices are ψ2± (x) = B
{

+ cos

− sin

}

(kx) (3) where the − sign is chosen for the (odd) sin

function for the following reason:



BOUNDARY CONDITIONS: We must always satisfy the matching condition for the wavefunction
[ψ must be continuous] and the matching condition for its spatial derivative [∂ψ/∂x must also be
continuous (except where the potential is infinite)] at the boundaries x12 ≡ −L

2
and x23 ≡ +L

2
.

The first matching condition immediately implies that ψ2 must be positive at x12, since we chose
ψ1 positive. For the odd function this mandates the negative sign in Eq. (3) above. If we now

explicitly apply the matching condition for ψ at the boundaries, we get
{

cos

sin

}

(

kL

2

)

=
A′

B
(4)

where A′ ≡ Ae−αL/2 is the magnitude of ψ at the boundary. The matching condition for the

derivative gives
{

+ sin

− cos

}

(

kL

2

)

=
α

k

A′

B
(5). Dividing Eq. (5) by Eq. (4) gives

{

+ tan

− cot

}

(

kL

2

)

=
α

k
(6). Adding the squares of Eqs. (4) and (5) gives

B2 = A′2

(

1 +
α2

k2

)

(7).

APPLYING the SCHRÖDINGER EQUATION: How do these guesses fare with our original

equation? On regions 1 and 3 we get − h̄
2α2

2m
ψ = Eψ, which ensures h̄α =

√
−2mE (8) since

E < 0 is the same throughout. On region 2 we have
h̄2k2

2m
ψ2 − V◦ψ2 = Eψ2 or

h̄k =
√

2m(V◦ + E) (9). Substituting these values for α and k back into Eqs. (7) and (6) gives

B = A′

√

V◦
V◦ + E

(10) and
{

+ tan

− cot

}





√

mL2

2h̄2

√

V◦ + E



 =

√

−E
V◦ + E

(11), respectively.

Equation (11) implies restrictions on the allowed values of E. This is anticipated [remember, E is
quantized] but you may be surprised to find a transcendental equation governing E. There is no

algebraic solution to Eq. (11)! [Actually, Eq. (11) is two transcendental equations for
{

even
odd

}

ψ.

As n and En increase, we alternate between even and odd solutions.] If we define

θ ≡
√

mL2(V◦ + E)

2h̄2
and θ◦ ≡

√

mL2V◦

2h̄2
then Eq. (11) reads

{

+ tan

− cot

}

θ =

√

θ2
◦

θ2
− 1 , which

one can plot up and solve graphically for the allowed values of θn (and therefore En). For a
detailed description of how to do this, see pp. 156-162 of French & Taylor, An Introduction to

Quantum Physics.

ARE THERE ANY BOUND STATES? Under what circumstances does Eq. (11) have a solution?
On the one hand, the general rule that confinement costs energy would seem to dictate that a
narrower well must be deeper in order to “hang on to” a particle: smaller L (or m) should require
larger V◦. The definition of θ◦ reflects this aspect of the problem: θ◦ is smaller for smaller V◦

and/or smaller mL2. However, tan θ

{

→ 0 as θ → 0
→ ∞ as θ → π/2

while

√

θ2
◦

θ2
− 1

{

→ ∞ as θ → 0
→ 0 as θ → θ◦

,

so that the two must intersect somewhere, no matter how small θ◦ is. Thus there is always at least
one (even) bound state for this potential! The apparent paradox is resolved when we realize that
the exponentially decaying “tails” of ψ(x) penetrate deeper and deeper into the classically



forbidden region as θ◦ gets smaller and smaller, until the region where ψ(x) is sinusoidal (inside
the well) becomes a negligible point at the centre of a wavefunction that decays away
exponentially from a central cusp. The stability of this solution is extremely sensitive to the
“flatness” of V = 0 in regions far from the well, for obvious reasons.

An interesting limit is obtained by allowing the well to shrink (L→ 0) while holding constant the
ratio L2V◦ (so that V◦ → ∞ in compensation). This is called the delta function potential.

IS THAT THE WHOLE STORY?? After all this work, what have we learned? We know ψ

everywhere to within a normalization constant A which can be found by applying
∫ ∞

−∞
ψ∗ψdx = 1

if we need it (e.g. if we want to calculate expectation values) and we have what we need to find En

(and therefore kn and αn) for the stationary states allowed in this potential well. It would be nice
to have a tidy algebraic solution, but even simple problems are not necessarily nice! If you want
exact solutions, you will have to solve the transcendental equations each time you specify the
parameters V◦, L and m which govern the physics of this problem. However, it is possible to make
many qualitative obervations (see class notes) based on simple right-hemisphere graphical
arguments. We may also examine some limiting cases:

DEEPLY BOUND STATES: If
h̄2π2

2mL2
≪ V◦, the lowest few eigenstates will have energies En that

are only a little above the bottom of the well [En = −V◦ + εn, where εn ≪ V◦]. Then Eq. (11) reads

approximately
{

+ tan

− cot

}

θ ≈ θ◦
θ

(

1 − 1

2

θ2

θ2
◦

)

or, even more approximately,
{− tan

+ cot

}

θ ∼ θ

θ◦
.

You may want to play with this approximation to see the spectrum of deeply-bound states. Note
that θ◦

−→
V◦→∞ ∞, so in the limit of the infinite square well the solutions are simply

{

tan

cot

}

θ = 0 , which is satisfied for θn = n
π

2
. Check that this agrees with the formula you

know already, bearing in mind that here we have defined the top of the well to have V = 0. . . .

UNBOUND STATES: In all the equations above we have assumed E < 0 (bound states). What
happens when E > 0? Taking the equations at face value, we would conclude that α is imaginary,
meaning that our initial assumption of exponentially decaying solutions outside the well was
incorrect and that ψ must be sinusoidal (oscillatory) everywhere. This is precisely the case. See
how far you can get assuming that what we have written so far still applies. . . .


