...H
In this equation, $\lambda$ is defined from the initial decay rate of the field, where the supercurrents are largest [35]. However, measurements of $\lambda$ involve a distribution of supercurrent densities over one or more spatial dimensions. Thus Eq. (2.1) is a more appropriate definition for $\lambda$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...$\xi$
The relationship between r0 and $\xi$ will be discussed more fully, later in this thesis.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...YBa2Cu3O$_{7-\delta}$,
See section 5.2 for a description of the crystal structure for this compound.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...energy.
The quantity $\mu$ must be an odd half-integer to ensure that the wave functions u and v in the Bogoliubov equations describing the excited states in the vortex core are single-valued, as discussed in Ref. [125].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...ratio
Recall from Chapter 4 that the Fourier transform diminishes the signal-to-noise ratio somewhat by weighting all of the time bins equally.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...here,
This assumes that $\lambda_{ab}^{-2} (T)$is normalized as in Eq. (7.2).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...(assuming
The lower limit for Hc2(0) in YBa2Cu3O7 is 120 T according to measurements which are summarized in a table on p.338 of Ref. [207].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...HREF="node38.html#fig10opt">7.11(a)
In YBa2Cu3O$_{7-\delta}$, the muon depolarization rate in the normal state $\sigma_N$ is extremely small, so that $\sigma_{\rm dis} \! \approx \! \sigma_f$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.