Relativistic Shifts of g_{μ} in Muonic Atoms

Jess H. Brewer

UBC Physics & Astronomy

The discovery of an M9B tune giving substantial transverse muon spin polarization allows convenient μ ⁻SR experiments in high transverse magnetic field. This new capability has made possible precise measurements of the magnetogyric ratios of negative muons in the ground states of muonic atoms of ¹²C, ¹⁶O, ²⁴Mg, ²⁸Si, ³²S, ⁴⁰Ca, ^{nat}Ti, ^{nat}Zn, ^{nat}Cd and ^{nat}Pb. The precision for ¹²C μ ⁻ is ± 23 ppm, of which only 6 ppm is statistical; for ^{nat}Zn μ ⁻ the precision is ± 269 ppm and for ^{nat}Pb μ ⁻ it is ± 0.23%. Such experiments may eventually provide a new testing ground for QED in very strong Coulomb fields; today they offer a new way of measuring finite nuclear size effects. I will discuss a little of the history of TRIUMF Experiment 932 and explain how these measurements emerged "accidentally" from an attempt to improve the performance of μ ⁻SR experiments in general.

Phys. Rev. A Brief Report, in press (2005)

People:

Jess H. Brewer	UBC (Physics & Astronomy)
Khashayar Ghandi	TRIUMF \rightarrow Mt. Allison U. (Chem)
Aaron M. Froese	UBC \rightarrow U. Sask. (Physics)
Bruce A. Fryer	Chatelech Secondary School
Donald Arseneau	TRIUMF (CMMS)

Facility & Method used:

*(to basic research in Materials Science and Chemistry)

[and "Fundamental" Physics]

Visit http://musr.org

"Themes" in $\mu^{\pm}SR$

 μ^+ only (?) <u>Muonium as light Hydrogen</u> (Mu = μ^+e^-) (H = p^+e^-)

- Mu vs. H atom Chemistry:
 - gases, liquids & solids
 - Best test of reaction rate theories.
 - Study "unobservable" H atom rxns.
 - Discover new radical species.
- Mu vs. H in Semiconductors:
 Until recently, μ⁺SR → only data on metastable H states in semiconductors!

µ⁺ or µ⁻ <u>The Muon as a Probe</u>

- Probing Magnetism: unequalled sensitivity
- Local fields: electronic structure; ordering
- Dynamics: electronic, nuclear spins
- Probing Superconductivity: (esp. HT_cSC)
 - Coexistence of SC & Magnetism
- Magnetic Penetration Depth λ
- Coherence Length ξ
- Quantum Diffusion: μ^{\dagger} in metals (compare H^{\dagger}); Mu in nonmetals (compare H).
- Ultra-Heavy Hydrogen: neutral muonic helium $(\alpha^{++}\mu^{-}e^{-})$ has $m \approx 4.11 m_{H}$
- Muonic Atoms: HF transitions with nucleus; relativistic shifts of g

TRIUMF Experiment # 932:

Improving μSR Performance

Initial proposal (Dec 2001) to M.S. EEC: M9B at LOW priority(!)

We take *only* beam no one else wants.

LISR: It is easy to get the impression that only positive muons are employed in μSR .

Although most μSR is μSR , it is often desirable to use negative muons in the same way, albeit with more difficulty. It is the goal of E932 to reduce that difficulty.

Drawbacks of $\mu SR \rightarrow Proposed Mitigations$

- Nuclear Muon Capture: short lifetimes, few decay e⁻
 Look for neutron asymmetries in heavier elements
- *L*•S Depolarization in the atomic cascade
- Giant Hyperfine Int. with nonzero-spin nuclei
- "Tag" events with specific muonic X-rays
- Observe characteristic F[±]
 precession signals

Possible Help: Many times a fast neutron is emitted from nuclear muon capture. Very few measurements have been made of the *correlation* of that neutron with the *muon's spin direction*. If cases are found where this **neutron asymmetry** is sizeable, we *may* be able to do neutron-triggered μSR , for which the *event rate* can be *higher* than in μSR .

Atomic Capture & L•S Depolarization of μ^-

L•**S** couplings Depolarize μ^- Spin unless **fast** Auger!

For positive "surface muons" *E*×*B* velocity selector ("DC Separator" or Wien filter)

Removes beam positrons

Allows TF-µ⁺SR in high field (otherwise B₁ deflects beam)

But not available for negative muons!

The *Helios* µSR spectrometer of the TRIUMF CMMS facility.

Helios on M9B

The *Helios* μ SR spectrometer of the TRIUMF CMMS facility enables TF- μ SR at fields up to 2 T, using 4 *e* detectors in a cylindrical array around the target sample. The negative muon beam of M9B at TRIUMF has nearly 50% transverse spin polarization, allowing injection into a strong magnetic field parallel to the beam momentum but (partially) transverse to the spins. Strong TF allows high precision measurements of the muon Larmor frequency and thus of g_{μ} .

Deeply Bound Hydrogenic States

Muonic orbitals are 207 times smaller than electronic.

For high Z, the muon is well **inside** even core electronic orbitals.

> **Relativistic shift** of lepton's magnetogyric ratio (Breit, 1924): for pointlike nuclei,

$$\frac{g_{\rm free} - g}{g_{\rm free}} = \frac{2}{3} \left(1 - \sqrt{1 - \alpha^2 Z^2} \right) \approx \frac{1}{3} \left(\frac{\bar{v}}{c} \right)^2$$

Theory (Ford et al.) vs. Expt. (Hutchinson et al.) in 1961

(4 years after the discovery of **P** violation in π - μ -e decay)

$\mu^{-}Z$ frequency spectra from E932 (M9B, 2004)

Raw Data

Sample	Frequency [MHz]
$ \mu^+ $ in graphite $ \mu^+ $ in Al metal $ \mu^- $ on ¹² C (graphite)	271.69888 ± 0.00072 271.58520 ± 0.00038 271.3684 ± 0.0016
$\mu^{-} \text{ on } {}^{16}\text{O} (\text{H}_2\text{O})$ $\mu^{-} \text{ on } {}^{24}\text{Mg (metal)}$ $\mu^{-} \text{ on } {}^{28}\text{Si}$ $\mu^{-} \text{ on } {}^{32}\text{S} (\text{newder})$	271.258 ± 0.010 270.9259 ± 0.0027 270.6502 ± 0.0069 270.406 ± 0.008
μ^- on 40 Ca (metal) μ^- on Ti (metal) μ^- on Zn (metal)	270.164 ± 0.069 269.719 ± 0.066 268.440 ± 0.072
μ^- on Cd (metal) μ^- on Pb (metal)	$265.73^{+0.46}_{-0.57}$ $264.50^{+0.59}_{-0.62}$

Only *statistical* uncertainties are shown, to emphasize the potential accuracy of such measurements.

In this experiment, systematic uncertainties were dominant for the *light* elements.

Results

Sample	g_{μ} Shift [%]		
μ^+ in graphite μ^+ in Al metal	$\begin{array}{c} 0.0499 \pm 0.0023 \\ 0.0080 \pm 0.0004 \end{array}$		
$\mu^{-} \text{ on } {}^{12}\text{C (graphite)}$ $\mu^{-} \text{ on } {}^{16}\text{O (H}_2\text{O})$ $\mu^{-} \text{ on } {}^{24}\text{Mg (metal)}$ $\mu^{-} \text{ on } {}^{28}\text{Si}$ $\mu^{-} \text{ on } {}^{32}\text{S (powder)}$ $\mu^{-} \text{ on } {}^{40}\text{Ca (metal)}$ $\mu^{-} \text{ on Ti (metal)}$ $\mu^{-} \text{ on Ti (metal)}$ $\mu^{-} \text{ on Cd (metal)}$ $\mu^{-} \text{ on Cd (metal)}$	$\begin{array}{c} -0.0718 \pm 0.0023 \\ -0.1124 \pm 0.0042 \\ -0.2348 \pm 0.0025 \\ -0.3363 \pm 0.0034 \\ -0.4262 \pm 0.0036 \\ -0.5155 \pm 0.025 \\ -0.679 \pm 0.024 \\ -1.150 \pm 0.026 \\ -2.15 \substack{+0.17 \\ -0.21} \\ -2.60 \substack{+0.22 \\ 0.02} \end{array}$		

Fractional shifts (in %) of the negative muon's *g* factor due to *relativistic* effects in the deeply bound ground state of the muonic atom.

(In Pb, most of the muon's orbital lies *inside* the nucleus!)

So what does it mean?

For pointlike nuclei (Breit, 1928):

$$\frac{g_{\rm free} - g}{g_{\rm free}} = \frac{2}{3} \left(1 - \sqrt{1 - \alpha^2 Z^2} \right) \approx \frac{1}{3} \left(\frac{\bar{v}}{c} \right)^2$$

Improved by Margeneau (1940) and later by Ford *et al.* (1962) in response to first μ ⁻SR measurements by Hutchinson *et al.* (1961) in light elements. First high-Z measurements by Yamazaki *et al.* (1974) challenged by Mamedov *et al.* (2003). Meanwhile electronic spectroscopy of high Z hydrogenlike ions has become possible [*e.g.* Häffner *et al.* (2000)].

Relativistic Shift of μ^- Frequency

Relativistic Shift of μ^- Frequency

Relativistic Shift of μ^- Frequency

E932 vs. Ford & Hutchinson

Phil Anderson:

(at a High T_c Superconductivity conference)

"Experimentalists should not attempt to interpret their own data."

[paraphrased]

Darth Vader:

"Leave that to me."

E932 on M9B, July 2005: 1st look at **Neutrons**

E932 on M9B, July 2005: Neutron counters in Omni'

M9B data 2-4 July 2005: Raw Histograms

M9B data 2-4 July 2005: (U-D)/(U+D) Asymmetries

Negative muon spin precession measurement of the hyperfine states of muonic sodium

Jess H. Brewer, Khashayar Ghandi, Aaron M. Froese & Bruce A. Fryer

CIAR, UBC, TRIUMF & Chatelech Secondary School

Both hyperfine states of muonic ²³Na and the rate R_{HF} of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, $R = 13.7 \pm 2.2 \ \mu s^{-1}$, is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe *et al.* in Na metal, but not with their smaller result in NaF. In NaOH we find $R = 23.5 \pm 8 \ \mu s^{-1}$, leaving medium-dependent effects ambiguous.

Phys. Rev. C Brief Reports 71, 058501 (2005).

	HFS	OF SEL	ECTED "BA	RE" M	LUONIC	ATOMS:
$\mu^{-}(z,A)$ ground state $f^{+} = I + V_2$ $F^{-} = I - V_2$						
ELEMENT	ΔE_{HF} (eV)	effective field	E SHELL ejected	R (F" RATE (LS") EXPT	REF
'H.	0.1817	3.24×10 ⁹	B.E. (eV)	1.3×101	(9/6)	Ponomareu 78
³ He	1.373	2-45×10 ¹⁰	NONE	nil		fillchenho '83
¹¹ B ₅	18	3.2×10 ¹¹	L., [9.3]	0.25	0,33(5)	winston '63 Favart <u>etal</u> '70
¹³ C ₆	11	2.0x10 ¹¹	L ₂ [8.3]		0.016(12)	800M'83
¹⁴ N. ₇	7.5	1.3× 10 ¹¹	NONE	nil	0.092 (33)	n A
¹⁹ F,	126	2.2×1012	L,[30]	5.8	6.1(7) from	ns]Winston'63
27 AL 13	263	4.7 x (0 ¹²	L, [89]	41	41(9)	Brewer 183
⁵¹ V ₂₃	1220	2.2 ×10 ¹³	L,[565]	700		Winston '63
93N641	~5000	~1014				
209 Big3	4660	8.3×10 ¹³	MEASURED	VIA SPLIT	TING of X-RI	ly energy

Characteristic precession frequencies of F[±] hyperfine states in selected low-Z muonic atoms

Isotope	Nucl.	Natural	Moment	oment Frequency	
$^{A}El_{Z}$	Spin	Abundance	μ_N/μ_μ	F^+/μ^-	F^-/μ^-
$^{1}H_{1}$	1/2	≈ 1	-0.314109	0.342946	0
² H ₁	1	≈ 0	-0.096436	0.301188	-0.397624
$^{6}\mathrm{Li}_{3}$	1	0.07	-0.092454	0.302515	-0.394969
$^{7}\mathrm{Li}_{3}$	3/2	0.93	-0.366253	0.158437	-0.402606
$^{9}\mathrm{Be}_{4}$	3/2	≈ 1	0.132447	0.283112	-0.194814
$^{10}B_{5}$	3	0.19	-0.202528	0.113925	-0.181434
$^{11}\mathrm{B}_5$	3/2	0.81	-0.302380	0.174405	-0.375992
$^{13}C_{6}$	1/2	0.01	-0.079000	0.460500	0
$^{14}N_7$	1	≈ 1	-0.045394	0.318202	-0.363596
¹⁹ F9	1/2	≈ 1	-0.295666	0.352167	0
$^{23}Na_{11}$	3/2	≈ 1	-0.249406	0.187648	-0.353919
²⁵ Mg ₁₂	5/2	0.10	0.096197	0.182700	-0.144221
²⁷ Al ₁₃	5/2	≈1	-0.409555	0.098408	-0.262229

²³Na *µ*⁻ *F*⁺ state

 $f_+ \bullet P_+(0) = 0.064(8)$ $R_{\rm HF} = 14(3) \,\mu {\rm s}^{-1}$

²³Na μ⁻ *F*⁻ state

 $f_{-}P_{-}(0) = 0.0090(15)$

$$T_2^{-1} = 0.024(100) \ \mu s^{-1}$$

 $\mu^{\bullet}SR \text{ in } Melamine \\ (C_3H_6N_6) \\ f_{N} \cdot f_{+} \cdot P_{+}(0) \text{ and } \Lambda_{N} \\ \text{both decrease with } B$

and Λ_N is much too large to be caused by either R_{HF} or neighbouring nuclear dipoles.

 Λ_{c} is also anomalously fast.

"Coulomb Explosion" Leftovers

Brewer's List of μSR Acronyms

