Relativistic Shifts of g_{μ} in Muonic Atoms

Jess H. Brewer, Aaron M. Froese & Bruce A. Fryer

CIAR, UBC, TRIUMF & Chatelech Secondary School

Precise measurements of the magnetogyric ratios of negative muons in the ground states of muonic atoms of ¹²C, ¹⁶O, ²⁴Mg, ²⁸Si, ³²S, ⁴⁰Ca, ^{nat}Ti, ^{nat}Zn, ^{nat}Cd and ^{nat}Pb have been achieved in high field μ^- spin precession experiments using a backward muon beam with a substantial transverse spin polarization. The precision for ¹²C μ^- is ± 23 ppm, of which only 6 ppm is statistical; for ^{nat}Zn μ^- the precision is ± 269 ppm and for ^{nat}Pb μ^- it is ± 0.23%. Such results may provide a new testing ground for quantum electrodynamics in very strong Coulomb fields.

"Who Ordered That?"

- I.I. Rabi, around 1946, upon learning of the "heavy electron"

The answer is now finally available:

I did, and I'll have mine with a side of fries!

Deeply Bound Hydrogenic States

Muonic orbitals are 207 times smaller than electronic.

Facility & Method used:

*(to basic research in Materials Science and Chemistry)

[and "Fundamental" Physics]

Visit http://musr.org

$\mu p \rightarrow n v_{\mu}$ in a nucleus:

Rate exceeds that of $\mu \to e^- \nu_{\mu} \nu_e$ for $Z \ge 11$.

The *Helios* μ SR spectrometer of the TRIUMF CMMS facility enables TF- μ SR at fields up to 2 T, using 4 e detectors in a cylindrical array around the target sample. The negative muon beam of M9B at TRIUMF has nearly 50% transverse spin polarization, allowing injection into a strong magnetic field parallel to the beam momentum but (partially) transverse to the spins. Strong TF allows high precision measurements of the muon Larmor frequency and thus of g_{μ} .

Raw Data

Sample	Frequency [MHz]
μ^+ in graphite	271.69888 ± 0.00072
μ^+ in Al metal	271.58520 ± 0.00038
μ^- on ¹² C (graphite)	$271,3684 \pm 0,0016$
μ^- on ¹⁶ O (H ₂ O)	$271,258 \pm 0.010$
μ^- on 24 Mg (motol)	271.200 ± 0.010
μ on Mg (metal)	270.9259 ± 0.0027
μ on ²⁰ Si	270.6502 ± 0.0069
μ^- on ³² S (powder)	270.406 ± 0.008
μ^- on ⁴⁰ Ca (metal)	270.164 ± 0.069
μ^- on Ti (metal)	269.719 ± 0.066
μ^- on Zn (metal)	268.440 ± 0.072
μ^- on Cd (metal)	$265.73^{+0.46}_{-0.57}$
μ^- on Pb (metal)	$264.50^{+0.59}_{-0.62}$
	0.02

Only *statistical* uncertainties are shown, to emphasize the potential accuracy of such measurements.

In this experiment, systematic uncertainties were dominant for the *light* elements.

Results

Sample	$g_\mu{ m Shift}[\%]$
$ \mu^+ $ in graphite $ \mu^+ $ in Al metal	$\begin{array}{c} 0.0499 \pm 0.0023 \\ 0.0080 \pm 0.0004 \end{array}$
$\mu^{-} \text{ on } {}^{12}\text{C (graphite)}$ $\mu^{-} \text{ on } {}^{16}\text{O (H}_{2}\text{O)}$ $\mu^{-} \text{ on } {}^{24}\text{Mg (metal)}$ $\mu^{-} \text{ on } {}^{28}\text{Si}$ $\mu^{-} \text{ on } {}^{32}\text{S (powder)}$ $\mu^{-} \text{ on } {}^{40}\text{Ca (metal)}$ $\mu^{-} \text{ on Ti (metal)}$ $\mu^{-} \text{ on Zn (metal)}$	$\begin{array}{c} -0.0718 \pm 0.0023 \\ -0.1124 \pm 0.0042 \\ -0.2348 \pm 0.0025 \\ -0.3363 \pm 0.0034 \\ -0.4262 \pm 0.0036 \\ -0.5155 \pm 0.025 \\ -0.679 \pm 0.024 \\ -1.150 \pm 0.026 \end{array}$
μ^- on Cd (metal) μ^- on Pb (metal)	$-2.15^{+0.17}_{-0.21}\\-2.60^{+0.22}_{-0.23}$

Fractional shifts (in %) of the negative muon's *g* factor due to *relativistic* effects in the deeply bound ground state of the muonic atom.

(In Pb, most of the muon's orbital lies *inside* the nucleus!)

So what? What does it all mean?

For pointlike nuclei (Breit, 1928):

$$\frac{g_{\rm free} - g}{g_{\rm free}} = \frac{2}{3} \left(1 - \sqrt{1 - \alpha^2 Z^2} \right) \approx \frac{1}{3} \left(\frac{\bar{v}}{c} \right)^2$$

Improved by Margeneau (1940) and later by Ford *et al.* (1962) in response to first μ -SR measurements by Hutchinson *et al.* (1961) in light elements. First high-Z measurements by Yamazaki *et al.* (1974) challenged by Mamedov *et al.* (2003). Meanwhile electronic spectroscopy of high Z hydrogenlike ions has become possible [*e.g.* Häffner *et al.* (2000)].

Phil Anderson:

(at a High T_c Superconductivity conference)

"Experimentalists should not attempt to interpret their own data."

[paraphrased]

Darth Vader:

"Leave that to me."

Linux and OpenOffice RULE!