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Abstract

This thesis is concerned with the temperature dependence and anisotropy of the magnetic pen-
etration depth (A) and the Ginzburg-Landau parameter k = A/ in the high temperature su-
perconductor YBaoCu3Qg.95 as observed by puSR measurements of the local field inhomogeneity
produced by the vortex state. Measurements were taken on a mosaic of single crystals in applied
fields in three field regimes: low (A < L), moderate (A > L) and high (A > L > £), where L is
the intervortex spacing and ¢ is the coherence length.

The anisotropy of A leads to variation in the measured field inhomogeneity as a function of the
angle between the applied field and ¢ axis of the crystal. Measurements in 100 G are consistent
with an anisotropy of five.

If the applied field is not parallel to one of the superconductor’s principal axes, an attractive
force between vortices along one direction arises when the superconductor is cooled in a constant
and low field. When the net intervortex repulsion exceeds the forces pinning the vortices in place,
the aspect ratio of the isosceles triangle defining the vortex lattice will change. Unfortunately, the
degree of disorder, where disorder is defined as the mean deviation of the vortices from their ideal
positions in the lattice relative to the distance between vortices, makes it impossible to determine
the low temperature aspect ratio in YBaoCusOg.95 using uSR. In the high field data, the degree
of disorder has an upper limit of ~ 5.5%.

In the vortex lattice, the maximum field is reached at the vortex core, which has a radius of
~ £. In the low and moderate field regimes, the core occupies a very small percentage of the unit
cell of the lattice, so the maximum field is not observable by ySR. In the high field regime, the
core results in a high field cutoff in the distribution of local fields, which can be observed directly
in the Fourier transform of uSR data. Fitting both Ay and &4, simultaneously in fields of 1.9 T,
4.1 T, 4.7 T and 6.5 T applied parallel to the ¢ axis of YBaoCu3QOg.95 yields kg = 70 £ 6 between
30 K and 75 K. At 10 K, Ay is measured to be 0.1490 £ 0.0120 pym.
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Chapter 1

Introduction

1.1 Superconductivity: A Brief Historical Perspective

Superconductivity in a given material is characterized by the complete disappearance of electrical
resistance when the material is cooled below a certain finite critical temperature, T, which was
first observed by Kamerlingh Onnes in 1911 in mercury. This alone is not enough to guarantee
the formation of a true superconducting state, and the phenomenon of superconductivity should
not be confused with that of perfect conductivity (a normal metal in the limit of zero resistance).
Superconductivity in a material is confirmed by the presence of the Meissner effect, which man-
ifests itself as complete magnetic flux expulsion when the material is cooled below the critical
temperature in a constant applied magnetic field—i.e., a superconductor below its critical tem-
perature behaves as a perfect diamagnet. In contrast, a perfect conductor resists changes in the

applied field (by producing eddy currents), but does not expel flux.

In 1935, shortly after the discovery of the Meissner effect,[1] F. London and H. London pro-
posed a phenomenological description of the electrodynamics of the superconducting state.[2]
With minor modifications, their ideas remain the basis of a very useful and successful description
of the electrodynamics of superconductors and will be described in more detail in the next section.
In 1950, rather than attacking the problem from the point of view of electrodynamics, Ginzburg
and Landau[3] adopted a more general description of a superconductor based on thermodynamics.
They described the superconducting state by a pseudo-wave function 1(7) such that the magni-
tude of ‘¢‘2 would be equal to one half the density of electrons (or holes) in the superconducting
state at a given location 7 in the superconductor: |¢(F )‘2 = %ns. They assumed that the free

energy, F, of the superconducting electron gas is a function of n; and expanded F' in powers of
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2 - 2
()| and [V ()| :
2
F-F,= / (f—m|v¢|2+a\¢|2+ %b|¢|4> av (1.1)

A variational minimization of F' lead to a Schrodinger-like equation for 1, but with an additional

nonlinear term,

2
ﬁ (—mv - 2—:35) W+ ath + b = 0. (1.2)

2
w(F)‘ = iny = —a/b. Eq. 1.2 is the first Ginzburg-Landau equation.

In zero applied field,
From a phenomenological point of view, |1/1|2 appeared as a useful order parameter to describe the
transition to the superconducting state, |¢\2 being zero above T, and different from zero below

T..

Even though successful phenomenological descriptions of superconductivity appeared early on,
it was not until 1957 that Bardeen, Cooper, and Schrieffer (BCS) provided a useful microscopic
description of the superconducting state. They showed that a weak attraction between electrons
in a Fermi gas causes pairs of electrons with opposite momenta and spins to form so-called Cooper
pairs. This in turn leads to an instability in the electron gas characterized by a “condensation”
of the Cooper pairs into a coherent quantum mechanical state ¥ (7) and by the appearance of
an energy gap A(T) at the Fermi surface. The fact that the Cooper pairs condense into a single
quantum state accounts for their ability to carry electric current without dissipation. It is also
possible to show that this leads to the Meissner effect, although this is less intuitively obvious.
Analogies with a Bose-condensed state of Cooper pairs were suggested shortly after BCS, but
it should be emphasized that it is not entirely correct: the Cooper pairs are not bosons and
the quantum mechanical state into which they condense is not a Bose condensate. Nevertheless,
this crude analogy is useful as a simple way to understand the phenomena of superconductivity.
Finally, note that the BCS description does not specify what mechanism is responsible for the
attraction of two electrons (or holes) to form a Cooper pair. In principle any attractive interaction
could lead to the formation of Cooper pairs. BCS showed that the interaction between electrons
and phonons in a metal is a likely pairing mechanism. This idea has been confirmed experimentally

many times since then, in particular via measurements of the so-called isotope effect, which is the
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variation of T, with isotopic mass. A more specialized version of the BCS theory was subsequently
derived by Eliashberg to incorporate a phonon pairing mechanism more accurately in the theory.
Other pairing mechanisms have been proposed, but so far none has been established on firm

grounds.

1.2 The London Formalism

In 1935, F. and H. London[2] showed that the phenomenon of perfect diamagnetism observed in
1933 by Meissner and Ochsenfeld[1] could be described easily if one assumed that the supercurrent
density 7, is proportional to the vector potential ff(f' (in the appropriate gauge known today as

)
the London gauge, VA= 0, which leads to V- 7=0). More precisely, they suggested that in a

superconductor
C —

J7) = =5 A, (13)

where A is a phenomenological parameter known as the London penetration depth. After substi-
tution of Eq. 1.3 into Maxwell’s equations, one can show by trivial algebraic manipulations that
the magnetic field B =V x A in a London superconductor obeys London’s equation:

1

.
VB- 5

B=0. (1.4)

So, A appears as the length scale over which the magnetic field varies in a superconductor. With
the appropriate boundary condition for the continuity of B at the surface of the superconductor,
it is easy to show that, typically, B is screened out by the supercurrents 7; over a characteristic
distance, the “magnetic penetration depth” A, and hence B does not penetrate inside the super-
conductor. London and London showed that A is related to the density of superconducting charge
carriers (either electrons or holes):

mc?

A=/ — 1.5
4dme?n,’ (1.5)

where m is the effective mass of one charge carrier, 2e is the charge of the Cooper pair (because
it is formed from two charge carriers), ¢ is the speed of light and ng is the number density of

superconducting charge carriers (or %ns is the number density of Cooper pairs) in the absence
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of applied magnetic or electric fields. Notice that n is assumed to be constant, i.e., the London

formalism is, strictly speaking, not valid if ns varies spatially.

When in 1950 Ginzburg and Landau[3] proposed the phenomenological description of the
superconducting state, they showed that they could recover the London electrodynamics from
the Ginzburg-Landau (GL) equations. More precisely, if ¥ (7 ‘1p ‘ (7) is the complex GL
pseudo-wave function (also referred to as the order parameter), Ginzburg and Landau showed
that in the presence of a magnetic field the supercurrent density is related to the vector potential

and the order parameter by the second GL equation:

V() = = |p(7)| A. (1.6)

If we identify ‘zﬁ(f’ ) ‘2 with %ns and assume no spatial dependence of the magnitude or phase of 1,
we recover the London equation, (Eq. 1.3), and hence London electrodynamics. The GL theory
goes one step further in that it can treat situations where the order parameter varies spatially.
This was an important step forward as we shall see. It should be mentioned that allowing |¢(F’ )‘

to vary spatially introduces a second length scale, the coherence length ¢

h

2y/mlal*

which for a given material, depends only on temperature according to a from the first Ginzburg-

§= (1.7)

Landau equation (Eq. 1.2). Likewise, the magnetic penetration depth depends only on tempera-
ture through the temperature dependence of ns = 2 |a| /b, which varies smoothly from zero at 7T,

to its maximum value at low temperature. The effective mass m is assumed to be constant.

For a given material, ¢ can be larger or smaller than A. The ratio

k= 1/ .
MNE= \/_|e‘hb 2 (1.8)

is a important quantity. In 1957, Abrikosov studied the problem of surface tension between su-
perconducting and normal regions.[4, Sec 46] He showed that when the surface tension is positive,
which occurs when s < 1/4/2, and when the applied field is less than a certain critical field H.(T),
the superconductor will be in the superconducting state throughout, and hence will exhibit the

Meissner effect. These superconductors are conventionally called type I superconductors. In type
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IT superconductors, where x > 1/4/2, the surface tension is negative, so under certain circum-
stances it will be energetically favorable to have co-existing superconducting and normal regions.
The type II superconductor will be completely superconducting and will exhibit the Meissner
effect (where the magnetic flux is completely expelled) when the applied field is below the lower
critical field H. (T), because the negative surface tension energy cannot compensate for the extra
energy required to support normal regions within the superconductor. However, superconduc-
tivity does not disappear immediately as the magnetic field is increased above H.1(T'). Instead,
a phase transition occurs to a state where there are both normal and superconducting regions;
this is known as the mixed state. When the applied field is greater than the upper critical field
H5(T), the superconductor is driven completely normal. (The high temperature superconductor

YBayCu307_s has x between 55[5] and 77,[6] which is well within the type II regime.)

The normal regions in a mixed state superconductor (known as ‘vortices’, ‘flux lines’ or ‘flux
tubes’) are configured to maximize surface area and minimize volume while conserving magnetic
flux. Abrikosov was also able to show that this occurs if they are cylindrical and parallel to the
average field direction. At the center of each vortex, superconductivity is totally destroyed, i.e.,
the density of superconducting carriers (and hence |1|°) vanishes. As we move away from the
center in the radial direction, the density increases gradually, reaching its bulk value within a
distance of £&. The cylindrical volume of radius ~ ¢ inside of which the magnitude of the order
parameter varies spatially is called the vortex core. Each vortex carries exactly one magnetic flux
quantum ¢, = % and is surrounded by a ‘vortex’ of supercurrent. Flux quantization is required to
ensure that the phase of the order parameter is a single-valued function in the vicinity of a vortex.
More precisely, the phase ¢ of the order parameter must change by an integer multiple of 27 for
all closed loops within the superconductor. If the loop surrounds a region which is entirely in
the superconducting state, ¢ will not change. If the loop surrounds non-superconducting regions,
either holes in the superconductor or regions in the normal state (e.g. vortex cores), the integer
will be non-zero and the magnetic flux through the loop will be that integer times the magnetic
flux quantum. The supercurrent flowing around the vortex produces a magnetic field which is
maximum at the center of the vortex core and decays approximately exponentially (with a length

scale of ) in the radial direction. The vortices arrange themselves in a periodic lattice[7] known
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as the Abrikosov lattice, the flux lattice or the flux line lattice. In an isotropic superconductor,
under normal circumstances, the lattice is triangular—extensive flux decoration pictures of both

triangular and square lattices are shown in Ref. [8].

Because the London formalism was not tailored to allow for spatial variations of the order
parameter, one might think that it is not useful for describing the mixed state. This is not
true, however, and in the limit of very large k, the London formalism can be slightly modified
to account for the presence of vortices. When & is very large (i.e., A > &), the vortex core (the
region where |1)| varies rapidly and which cannot be described by the London formalism), is very
small compared to the length scale A over which the magnetic field (the solution to London’s
equation, Eq. 1.4) varies. Therefore, it is not unreasonable to neglect the spatial variations of |1|
when determining the magnetic field distribution. Of course, by doing this we have given up the
possibility of determining physical quantities on a scale comparable to £ but for many purposes
this is adequate. Let us now derive the London equation (Eq. 1.4), but this time starting from the
second GL equation (Eq. 1.6), rather than Eq. 1.3. In other words, we keep the term containing
the phase ¢(7) of the order parameter (), which is still allowed to have a spatial dependence
while the magnitude of the order parameter |i| is now assumed to be constant. The derivation
is the same as before, but we now have one additional term of the form V x 6(,0. Below H, this
term vanishes, but when H,; < H < H. and vortices are allowed, it does not vanish due to the
fact that near a vortex the phase is a multi-valued function which changes by 27 when a closed
loop around a vortex core is traversed. One can show that vV x 6(;7 is in fact proportional to a
Dirac delta function, and the London equation is now identical to Eq. 1.4, but with an additional
source term describing the presence of a singularity in the order parameter, i.e., a vortex:

1

" B = ¢o6(7)5. (1.9)
L

V2B —

where Z is the vortex direction. The core (with radius = ) is so small on the scale of A that
it is reasonable to approximate it by a point singularity; this is the physical origin of the delta
function in Eq. 1.9. Thus we have allowed for the presence of vortices in the London formalism

without violating the restriction of a constant superconducting electron density.

The above equation for the magnetic field in the presence of a single vortex allows us to
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study the spatial variations of the magnetic field in a type II superconductors by solving a linear
equation, as opposed to the much more complicated problem of having to solve the nonlinear GL
equations for 1 and A. We can now think in terms of interacting point particles (vortices) rather
than in terms of two continuous fields ¢ and A. Therefore, Eq. 1.9 can be extended to the case
of multiple vortices at locations 7,

U Lo

V*B — )\—QB = ¢od(F — 7)) 2. (1.10)

L

Generally speaking, when the combination of field and temperature is such that the magnitude of
the order parameter is constant but the phase depends on the position, the superconductor can
be described by the above London equation. In the context of this thesis, this is the case when
the coherence length is negligible compared to both the magnetic penetration depth (x> 1) and

the inter-vortex spacing.

The solution to Eq. 1.9 for the magnetic field set up by a vortex has a singularity at 7 = 0. This
is of course due to the fact that what happens close to the core cannot be described adequately
by the London formalism. In order to properly evaluate the field in this region, it is necessary to
take into account the spatial variation of the order parameter. However, introducing a suitable
cutoff (on the order of £) when evaluating integrals and sums over space of functions containing
B as obtained from the London equations, while not completely rigorous, is adequate for most

purposes.

1.3 The Superconducting Gap and the Pairing State

In an s-wave superconductor, Cooper pairs of carriers are in a spin singlet state with equal and
opposite momenta (E and —E) with zero angular momentum and their spins are antiparallel and a
total angular momentum of zero. The superconducting gap A(E, T') is the minimum energy above
the Fermi energy that quasi-particles excitations can have, which means that the energy needed
to break up a Cooper pair is twice the energy gap. Using the Heisenburg uncertainty principle
and the Fermi velocity, it is more precise to view the Cooper pairs as correlations between pairs

of particles in momentum space over a length scale called the coherence length & = hvp/A.[4, Sec
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39] In the case of an s-wave singlet state, the gap is assumed to be independent of momentum.
For more elaborate paring states, it may depend on the direction of E. Other possible pairing
states may have higher angular momentum and/or a triplet spin state as long as the total wave
function is antisymmetric with respect to the exchange of two of the fermion charge carriers (either
electrons or holes). In the case of d-wave superconductivity, the carrier’s spins are antisymmetric
and the gap may be of the form

A(e) = A, (k2 — £2) (1.11)

where EF is on the Fermi surface, although there are other allowed d-wave symmetries. Note that,
in this case, along the diagonal directions (|k;| = |ky|), the gap is zero which means that it is very
easy to reduce the number of carriers in the superconducting ground state by thermal excitations.
Consequently, this will affect physically measurable quantities, such as the magnetic penetration
depth, which depend on the density of superconducting carriers. The effect of different energy gap
structures (isotropic or having nodes where the gap is zero) upon the temperature dependence of

the magnetic penetration depth by is discussed further in Sec. 6.3.

1.4 High Temperature Superconductivity [HTSC]

In 1986, Bednorz and Miiller[9] discovered that the compound Las_;Ba;CuO44, was supercon-
ducting, with a critical temperature greater than 30 K, which was unprecedentedly high. In 1987,
YBayCu307_,[10] was discovered, which, with optimization of its oxygen concentration, has T
as high as 93.5 K. Many other related compounds, all with two dimensional layers of coppers
and oxygens separated by rare earth, alkaline earth, T1, Bi, Pb and other elements, have critical

temperatures ranging from a few degrees Kelvin to 130 K.

1.4.1 Magnetic Properties and the Underlying Mechanism of HTSC

In its simplest form, BCS theory describes an s-wave pairing state, where the spins of Cooper pairs
are anti-symmetric and the gap function A(T,) is isotropic. Other pairing states, such as d-wave

and p-wave, are also possible. As explained above, the pairing state[11] will affect the temperature
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dependence of quantities such as the magnetic penetration depth (which can be measured by uSR
or microwave radiation), the nuclear spin-lattice relaxation rates (1/77) and Knight shifts (both
of which can be measured by NMR). Precise measurements of such quantities are essential if we

are to determine the pairing state of high temperature superconductors.

Moreover, most of the high temperature superconductors are magnetic insulators when the
carrier concentration is reduced enough to destroy superconductivity. Is this a coincidence or
is it related to the mechanism producing the superconductivity? Would the symmetry of the

magnetism influence the symmetry of the pairing state?

The critical temperature 7T, is quite sensitive to the number of superconducting carriers
present, which can be adjusted through doping (z or y in Lap ;Ba;CuO4y, and YBayCus-
O7_y).[12, 13, 14] When doping is reduced enough that superconductivity is lost, most copper-
oxide based high temperature superconductors become antiferromagnetic insulators with the mag-
netic moments on copper atoms in at least one copper-oxide plane per unit cell.[15] (Refs. [16],
[17] and [18] report SR measurements of the magnetic phase diagram for YBayCuzO7_,.) Even
in superconducting samples, dynamic antiferromagnetic spin fluctuations have been observed by
neutron scattering.[19, 20] These result from electronic magnetic moments on those copper atoms
which lie in the same copper-oxygen planes as the superconducting carriers. The normal state
(T' > T.) nuclear spin-lattice relaxation rates 1/73 for oxygen nuclei which lie in the planes[21]
and for the yttrium nuclei[22] in superconducting YBapCu3O7_, show the Korringa behavior
(1/Ty o< T') expected for metals. Strong deviations from Korringa behavior are observed for the
copper atoms in the planes[21] due to antiferromagnetic fluctuations at these copper sites. The ef-
fects of antiferromagnetic fluctuations are cancelled for both oxygen and yttrium because they are
positioned symmetrically with respect to the planar copper. The fundamental question is whether
high temperature superconductivity is phonon mediated as in conventional superconductors (in
which case any accompanying magnetism and magnetic fluctuations are incidental and unrelated

to the superconductivity mechanism), or if it is mediated by antiferromagnetic spin fluctuations.

Bulut and Scalapino[23] modeled superconductivity mediated by spin fluctuations rather than



10 CHAPTER 1. INTRODUCTION

phonons and compared their predictions for s-wave and d-wave pairing states with observed nu-
clear spin-lattice relaxation rates 1/77 below T, and Knight shifts for both the oxygen and copper
nuclei in copper-oxygen layers of YBasCu3gO7 (where both the moments and the superconduct-
ing carriers reside). They found that the measured Knight shifts are consistent with s-wave
pairing while the nuclear spin-lattice relaxation rates are consistent with d-wave pairing. Other
experiments were no more definitive; there is (at this writing) no strong evidence in favor of any
particular pairing state.[11] If the accuracy of the magnetic penetration depth measurements is
improved, it may help to determine the pairing state in YBaoCu3O7_y. In this work I have sought
to accomplish this by detailed fitting of SR data taken in a mosaic of oriented YBasCusOg.95
crystals, which removes many of the uncertainties inherent in magnetic penetration depth mea-
surements taken on unoriented sintered powders[24, 25, 26] and is an improvement over earlier

pSR studies of oriented YBagCuzOg 95 crystals|[27, 28, 29] which used only Ansatz fitting functions.

1.5 f(T), /\(T) and K,(T) in YBaQCU306_g5

The coherence length ¢ is not only the size of the vortex core, but it is of fundamental interest as the
length scale over which the superconducting carriers interact to form Cooper pairs. Measurements
of Heo(T) can be used to determine the temperature dependence of the coherence length &(T),
but due to the extremely high value of H.(0) in YBayCu3Og.95, He2(T') has only been reliably
measured within a few degrees of T,.. Assuming s-wave BCS temperature dependence, Lee et
al.[30] deduced that £,4(0) = 13.6 + 0.8 A and £.(0) = 1.2 £ 0.2 A, from measurements of the
superconducting fluctuations between 7, and 0.65 T, in YBaoCu3zO7. One of the problems in the
measurements of H.o and ¢ is that the number of superconducting carriers ng continues to increase
with increasing doping ¥ in YBapCu3zO7_,, while the critical temperature has plateaued.[13, 14]
This means that samples with similar critical temperatures may have significantly different values
for fundamental parameters, such as the magnetic penetration depth[13, 14] and the coherence
length, which depend on the number of superconducting carriers. This may be the source of the
range of values reported for the slope of Hy near T, (for Hco || €), varying from —1.65 T/KI[5] to
—1.90 T/K[6] and higher.
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As seen in the measurement of the penetration length, YBaysCu3O7—, is anisotropic, with
a magnetic penetration depth for fields in the copper-oxide planes (A.) about five times larger
than that for fields perpendicular to the planes (Ag).[28] The A:/A4p ratio can be much larger
in other high T, superconductors. This anisotropy arises from the layered chemical structure
of the superconductor, and suggests that the Fermi surface may be closer to cylindrical than
to the roughly spherical surface expected in isotropic superconductors. This will also affect the

temperature dependences of characteristic parameters such as H9.[31]

The temperature dependence of the Ginzburg-Landau parameter & is of particular importance,
as it reflects the strength of the charge carrier coupling which produces the superconductivity: in
BCS theory it is constant with weak coupling but with strong coupling increases as temperature
decreases. Different theories (such as phonons vs. magnons) require different coupling strengths
in order to describe the observed behavior; if the coupling strength were measured independently,
it could eliminate a number of possible theories. Moreover, since both the coupling strength and
the pairing state affect the temperature dependence of A(T), knowing the coupling strength would
narrow down the possible pairing states. Reversible magnetization measurements of x can only
measure a small region between T, and the irreversibility temperature 7;,, at which vortex pinning
sets in.[5, 6] This thesis reports the first measurement to date of x(7T') in YBasCuzQOg.95 below

the irreversibility temperature.

1.5.1 Flux Pinning and the Irreversibility Temperature

While the irreversibility temperature and the strength of the pinning are not related to the mecha-
nism of superconductivity, they are also important. When a current is applied to a superconductor
without pinning in an applied field, the vortices move perpendicular to the current via a Lorentz
force. This is observed as resistance since, unlike that of the superconducting region, the motion
of the normal vortex cores produces dissipation. Practical applications for superconductors (e.g.
use in high field magnets) require that the vortices be well pinned in place. While the effects of
pinning are usually investigated under dynamic situations (AC applied fields, applied currents,

etc.), in this thesis the effect of disorder in the vortex lattice due to pinning is investigated in static
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low, intermediate and high fields, via the “smearing” effect on the uSR lineshape. In contrast,
flux decoration experiments, which directly image the individual vortices within the vortex lattice
(and, hence, any disorder in it), are limited to applied fields of about 120 G.[32] In principle, the

degree of disorder can be correlated with the strength of the pinning centers.[33]

1.6 u4SR in High 7, Superconductors

Positive and negative muons are spin 1/2 leptons, which are heavy “cousins” to positrons and
electrons; 4 TSR is a technique in which polarized positive muons are implanted in samples and the
time dependence of the depolarization of the muons’ spin polarization (due to an inhomogeneous
field distribution) or the relaxation of the muons’ spin polarization (due to spin-lattice interac-
tions) are observed via the decay of the muons into positrons. The decay positron is emitted in

a direction which is correlated with the muon spin direction at the time of decay.

The positive muon forms a hydrogen-like bond with oxygen in the copper-oxide based high
temperature superconductors[34, 35, 36, 37, 38] within picoseconds of entering the sample. Be-
cause the superconductors are metals, the bonding electrons are delocalized, and the muons are
observed to be diamagnetic with a gyromagnetic ratio essentially identical to that for bare muons
in vacuum, 7y, /2r = 0.01355342 MHz/G. They show no evidence of diffusing in YBasCu3zO7_s
below 150 K.[39] Therefore, motional narrowing effects on the SR signal are of no concern unless
the magnetic structure in the sample is changing on a time scale comparable to the muon lifetime.
For static applied fields and no applied current, the vortices in YBayCu3O7_s are static in the

time frame of the muon, except perhaps very close to 7.

This thesis is concerned with the muon depolarization produced by the particular inhomoge-
neous magnetic field distribution arising from a vortex lattice in a type II superconductor. “True”
relaxation (in the sense of loss of muon polarization due to actual energy transfer between the
muon spins and the lattice) is not important in the copper oxide based perovskite superconduc-
tors because the time scale is too long to be observable by time differential 4SR (on the order of

milliseconds in NMR measurements), and therefore is ignored in this thesis.
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It is not uncommon to fit high transverse field uSR data taken in solid state systems with a
Gaussian function for the depolarization [e_%(at)2 cos(y,Bt)] when the local fields are static and
the muons are not diffusing. While Gaussian fits give the average field and the second moment
of the local field distribution, they are not always appropriate. The field distribution due to the
vortex lattice in a type II superconductor is particularly asymmetric and the Gaussian is not
a good Ansatz fitting function. This thesis discusses the puSR lineshape (which is the Fourier
transform of the time dependence of the muon polarization) and the results of fitting to the
theoretical lineshape when statistics allow, and to a Gaussian or a Lorentzian when they don’t.
The goal is to accurately determine the magnetic penetration depth, the coherence length and
the degree of disorder in the vortex lattice (and their respective temperature dependences) from

the experimental lineshape.

1.7 Sample

The high quality YBaoCusQOg.95 crystals used in the experiments reported on in this thesis were
made by Ruixiang Liang of the University of British Columbia. A flux method was used to
make the crystals, which were grown in yttria-stabilized zironia crucibles. They were carefully
oxygen annealed. Details of the method are described in Ref. [40], which also reports on low field
magnetization, a-b resistivity, microwave resistance and heat capacity measurements. The critical

temperature transition width is less than 0.25K and the onset 7 is 93.5 K.

The crystals were originally mounted as a mosaic on a 25.4 mm diameter 99.999% pure silver
disk using Apiezon N grease, with the ¢ axis normal to the plane of the disk. The center 1 cm
diameter region was composed of the six largest crystals, with areas of 3.0x 3.0 mm?, 3.3 x2.4 mm?,
3.0 x 2.4 mm?, 3.0 x 2.5 mm?, 2.4 x 2.4 mm?, and 3.0 x 1.5 mm?. The mosaic was filled out

2. The large crystals were

to a 1.5 cm diameter with smaller crystals, as small as 0.5 x 0.5 mm
200-300 pm thick but the smaller crystal near the edges of the mosaic were as thin as 100 pm.
This mosaic was used in the low and moderate field experiments described in Chapters 5 and 6.

The mosaic was fitted together tightly, so that as little as possible of the silver backing showed

through.
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For the high field experiment, a portion of these crystals were mounted as a mosaic on a 8§ mm
diameter 99.999% pure silver disk. The mosaic was comprised of 19 flat crystals, ranging in area

2

from 7.4 mm? to 0.26 mm?. The typical thickness was 0.2 mm. This mosaic was also closely

fitted.

1.8 A note about units, etc.

In this thesis, I strive to report results in terms of magnetic fields in units of gauss or tesla (1T
= 10*G) rather than in muon precession frequencies, which are proportional to the magnetic
fields. I feel that the general reader is more interested in the behavior of the local field in the

superconductor YBayCu3QOg 95 than in the muon gyromagnetic ratio.

I have chosen to report the magnetic penetration depth in units of gm rather than nm or A,
which allows the scaling factor A~2 to have convenient values between 10 and 50 for YBagCuzOg.95.
The constant for magnetic flux quantum is used with units of G pm?, which allows calculation of

the distance between vortices without having to keep track of several powers of ten.



Chapter 2

Basics of Muon Spin Rotation and Relaxation

2.1 Overview

The use of muons to probe solids, liquids and gases is collectively referred to as puSR: Muon
Spin Rotation/Relaxation/Resonance, where the choice of word beginning with the letter “R”
depends on the specifics of the application. (For additional general information on pSR, refer
to the review article by S.F.J. Cox[41] and the books by A. Schenck[42] and J. Chappert and
R.I. Grynszpan.[43])

Muons are spin 1/2 leptons with a mean life 7, = 2.19709(5) us and a mass
105.65839(29) MeV =2 = 206.7291(11) m, = 0.11261(28) m,, (2.1)

where m, is the mass of an electron and m,, is the mass of a proton (values from Ref. [44]). From
a chemical standpoint the positively charged muon can be treated as a light proton, while the
negative muon can be thought of as a very heavy electron. When a negative muon is implanted in
a solid, it is captured by one of the atoms and cascades down into the lowest muonic orbital. Since
that orbital is comparable in extent with the radii of heavy nuclei, the muon usually undergoes
nuclear capture, converting a proton into a neutron (4~ p — nv,). This results in complicated
behavior such as a shortened lifetime and rapid muon spin depolarization. This thesis is concerned

only with the use of positive muons.

Positive muons implanted in a sample will precess at an angular frequency w, = v,B in the
presence of a local magnetic field B, which is the sum of the applied field and the local internal

fields due to local magnetic moments and screening currents. The muon gyromagnetic ratio[42]

15
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is

;—7’; = 0.01355342(40.51 ppm) MHzG ™. (2.2)

The ensemble spin polarization will experience dephasing because muons which stop in different
local fields will precess at different rates. Dephasing due to inhomogeneities in the field distribu-
tion throughout the sample (which can be reversed using the spin echo technique) is sometimes
mistakenly referred to as muon spin relaxation. These inhomogeneities can be caused by such
things as imperfections in the experimental magnet, spin disorder in a ferromagnetic or antifer-
romagnetic sample, spin glass magnetism, random nuclear dipolar fields or the mixed state of a
type II superconductor. Depolarization due to irreversible processes, such as muon diffusion and
muon spin flipping due to hyperfine interactions with electrons and nuclei in the sample, is more

correctly referred to as muon spin relaxation.

2.2 Production of Low Momentum ™

When protons accelerated to an energy of 2 500 MeV by an accelerator such as the TRIUMF
cyclotron hit a “production target,” pions (w) are produced via the reactions of the projectile

proton (p) with the protons and neutrons (n) of the target’s nuclei:

p+p — T +p+n
p+n — T +n+n

- T +p+p. (2.3)

The resulting pions decay via the weak interaction into muons (x) and muon neutrinos (v,) with

a lifetime of 26.030(23) ns[44]

= u++l/u

(A TR S 7 (2.4)
As this is a two body decay, the muon and the neutrino are emitted in opposite directions in

the rest frame of the pion in order to conserve momentum. The muon carries a kinetic energy

of 4.12 MeV in the rest frame of the pion which implies a momentum of 29.79 MeV /c. Because
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the pion has spin zero, the combined spin of the muon and the neutrino must also be zero. Since
neutrinos are exclusively left handed—that is, their spins are antiparallel to their momentum—
the muon from the pion decay must also be left handed. Therefore, the decay of positive pions
produces 100% longitudinally polarized positive muons with total relativistic energy of 109.8 MeV.

The decay muons are emitted isotropically in the pion rest frame.

The muon itself decays in vacuum with a mean lifetime (7,) of 2.19709(5) us[44] into an

electron or positron and a neutrino-antineutrino pair:
,u+ —et+ Ve + 1y
P e 4 e vy, (2.5)

where the combination of muon and electron neutrinos and antineutrinos is such that both lepton

numbers are conserved. Due to the facts that:

1. this is a three body decay of a particle with spin 1/2,
2. only left-handed neutrinos exist, and

3. a highly relativistic et /e~ behaves like a /v in a weak interaction,

the positron/electron will be emitted in a direction which is correlated with the muon spin. After
integrating over all possible neutrino momenta, the probability W per unit time that a positron

will be emitted at angle @ with respect to the u* spin polarization direction is given by

e_t/TN

dW (e,0) = [1 + a(e) cos O]n(e€) de d cos 6 dt (2.6)

Ty
where a(€) = (2¢ — 1)/(3 — 2¢) and n(e) = 2¢?(3 — 2¢). The reduced positron energy is defined by
€ = E/Epax where the maximum positron energy Fmax = 52.83 MeV is approximately equal to
half the muon rest energy. The probability as a function of polar angle @ is shown in Fig. 2.1 for
the values of € = 1.0 and € = € = 0.682, of which the latter corresponds to the average positron
energy. The energy average of the asymmetry function a(e) is @ = 1/3, while the low energy limit

is a(e — 0) = —1/3 and the high energy limit is a(e — 1) = 1.
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Figure 2.1: Radial plot with respect to u™ spin of positron emission probability for ¢ = € (solid
line) and e between 0.1 and 1.0 (dot-dashed lines).

The muon spin polarization will be very nearly 100% for muons produced by those pions
which decay near the surface of the production target.[45, 46, 47] These muons are commonly
referred to as “surface” muons and have a typical momentum of 28 MeV/c—much lower than
those usually obtained from pions which decay in flight. The surface muons have a total range of
about 140 mg/cm? in water and a straggling range about 20 mg/cm? in water so denser samples as
thin as 100 um can be studied. In YBayCuzQg 95 crystals, the average range is about 140 mg/cm?,

which corresponds to a thickness of approximately 200 pym.

2.3 Experimental Apparatus

Along the beam line there are bending magnets and momentum slits which select particle mo-
menta corresponding to surface muons. Just before the experimental area, there is a Wien filter
which has mutually perpendicular electric and magnetic fields that are both perpendicular to the
beam. The relative strength of the fields can be adjusted to pass a specific velocity of particle
without deflection, so the positron contamination can be virtually eliminated from the beam while

transmitting the muons undeflected. Because the muon spin will precess during the time of flight
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through a magnetic field, careful choice of fields in the Wien filter can rotate the muon spin as
much as 90° from the beam momentum axis.[47] Since the beam is polarized, rotating the spin
until it is perpendicular to the momentum moves the anisotropic distributions of decay positrons
that we wish to detect into the plane perpendicular to the background produced by the final
collimator, thus lowering the detected background. Because of its dual purpose, a Wien filter is

also referred to as a muon-positron separator and a spin rotator.

Spin rotation is absolutely essential for high transverse field (TF) uSR experiments in which
the muon spin must be perpendicular to the experimental magnetic field and the muon momentum

must be parallel to the field to avoid beam deflection via the Lorentz force
F = ¢|(¥ x B)| = mv?/R. (2.7)

A particle with charge ¢ and momentum p = mwv perpendicular to an applied field B will have a

radius of curvature R where

mu? p
= — == 2.8
B~ 4B’ (2.8)

which gives a radius of 9.22 cm at a field of 1 T for surface muons with momentum of 28.0 MeV /c.
In 100 G, the radius of curvature is 9.22 m. The Omni Prime pSR spectrometer (Fig. 2.2) consists
of two sets of Helmholtz coils which produce magnetic fields up to 0.35 T longitudinally and 120 G
vertically. Using its vertical coils (each with radius 0.4445 m, spaced 0.4445 m apart), there is a
horizontal displacement of the beam spot of approximately 0.08 cm at 100 G due to the muon’s
passage through the fringe field (~ 0.183B from 2 m upstream to the center of the coils). Omni
Prime’s longitudinal coils apply a field parallel to the muon momentum direction. Its fringe field
(= 0.160B from 2 m upstream to the center of the coils) is also parallel to the muon momentum

and therefore causes no displacement.

The muon beam leaves the beam pipe though a thin vacuum window, passes through a thin
(127 pm to 381 pm) scintillator and enters the uSR apparatus containing the sample (see Fig. 2.2).
The apparatus is inside one or more magnets, which are usually placed with the largest applied
field parallel to the muon momentum to avoid beam deflection. If the magnetic field is applied

parallel to the muon spin, the configuration is referred to as a longitudinal field (LF) geometry
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Figure 2.2: “Omni Prime” ySR spectrometer, shown with a three inch diameter axial gas flow
cryostat. A blow up of area with the counters (represented by only the scintillating portion) is
shown in the upper right hand corner. The forward counter is split, with each half counter having
a three inch diameter semi circle cut out. The back counter has a one inch hole cut out for the
muon beam. Up and down counters have been left out for clarity.

and the technique is Longitudinal Field Muon Spin Relaxation (LF-uSR). If the magnetic field is
applied perpendicular to the muon spin, the configuration is referred to as a transverse field (TF)
geometry (Fig. 2.3) and the technique is Transverse Field Muon Spin Rotation (TF-uSR). If no

external magnetic field is applied, the technique is Zero Field Muon Spin Relaxation (ZF-uSR).

The incoming muons and the decay positrons are detected with counters made of scintillating
plastic connected by ultraviolet-transmitting (UVT) plastic light guides to photomultipliers. A
scintillator emits light when charged particles (such as positrons and muons) pass through it; the
light is collected and guided to the photomultipliers by total internal reflection in the light guide.
The photomultipliers convert the light into an electrical signal, which is transmitted via coaxial
cable to a counting room where fast electronics (see Fig. 2.4) are used to interpret and store the

information.
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Figure 2.3: High transverse field (TF) geometry with full spin rotation (90°). The UP and DOWN
counters are not shown for the sake of clarity. The BACKWARD and FORWARD counters are
usually used for ZF and LF experiments with non spin-rotated muons. The coordinate origin has
been displaced from the center of the sample for clarity. TM labels the muon counter.

Between the end of the beam pipe and the sample is a thin scintillator used to detect incoming
muons. This muon counter must be thin, on the order of 250 pym, and positioned as close as
possible to the sample to minimize the effects of multiple scattering in the scintillator which
causes the beam to spread. A large beam spot is especially undesirable with small samples since
some of the muons will miss the sample and produce a background signal. The muon counter will
also detect beam contamination positrons and decay positrons from stopped muons, but with a
far lower efficiency than it has for muons. False events due to positrons can usually be rejected
by threshold set points in the constant fraction discriminators in the electronics (labeled CFD in

Fig. 2.4).

Between the magnet and the sample are the decay positron counters (Fig. 2.2). For an LF
geometry, one (BACKWARD) will be between the beam pipe and the sample (with a hole cut out
for the beam to pass through) and another (FORWARD) on the opposite side of the sample. For a
spin-rotated TF geometry, the counters are placed surrounding the beam rather than intersecting
it. One (UP) will be in the direction of the pre-rotated muon spin and another (DOWN) 180°
opposite. Whenever possible, two more are used, LEFT and RIGHT (Fig. 2.3). If all six counters
are used, it is in principle possible to subtend all angles (save the two holes for the beam entrance

and the cryostat) and not waste any of the decay positrons. Overlap of detector solid angles must
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Figure 2.4: SR Time Differential Electronics Schematic. The 250 ns delay line from the positron
counters allows a histogram to accumulate the positron events which occur before a muon enters
the sample. If these events are not correlated with the muon entering the sample, this provides
a good estimate of the random background. Note that only two of the counters are shown (L
and R).
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be carefully avoided since “multiple hits” render the trigger ambiguous.

Time differential 4SR maps the time evolution of the muon spin polarization. First, the beam
rate is reduced until less than one muon on average enters the sample during the time window At
over which one wishes to examine the muon behavior (typically At ~ 10 us). The time window
(“gate”) is generally chosen to be between two and five muon lifetimes; since the number of events
falls off exponentially with time, longer gates are impractical. The signal from the muon counter
(indicating an incoming muon) starts a clock, subject to a pile-up gate. The muon thermalizes
and stops in the sample, where it precesses in the local field until it decays. When the decay
positron is detected in one of the positron counters (BACKWARD, FORWARD, UP, DOWN,
LEFT or RIGHT) the clock is stopped and the event is added to the appropriate time bin in the
histogram corresponding to that positron counter. If more than one event occurs within a data
gate, then they are all rejected. The accumulation of many single events provides an ensemble

average of the behavior of a single muon.

2.4 uSR Data

The most obvious feature of a positron counter histogram is the exponential decay of the number
of histogrammed events reflecting to the muon lifetime of 7, = 2.19709(5) pus (Fig. 2.5). For the

it" counter, the number of events in the histogram has the form

Ni(t) = Ni[l + Ai(t)] et/ + B, (2.9)

where B; is the random background and A;(0) is the positron asymmetry. Since Poisson statistics
apply to any “rare” event (such as obtaining a particular time interval for muon decay), N events
between times ¢ — §t/2 and ¢+ 6¢/2 implies a statistical uncertainty of /N + 1. For large numbers
of events, this reduces to v/N. The histograms for two matched counters, e.g., LEFT and RIGHT,
would contain the same number of events if there were no net spin polarization (assuming that the
counter geometries and photomultiplier efficiencies are exactly the same—Sec. 2.5 shows how to
account for the differences). However, if the polarization were predominantly in the direction of

one of the counters, a higher percentage of the decay positrons would be detected in that counter
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Figure 2.5: Single histogram experimental time spectrum showing the exponential decay of the
muons and muon precession. The events recorded at negative times (about 6.5 counts per ns)
reflect the size of the random background (see Sec. 2.5.2).

compared to the others. The precession of the ensemble muon polarization will be detected as a

periodic oscillation in the number of positron events recorded for a particular counter.

Since the overall decay in the histogram due to the lifetime of the muon is unrelated to the
information we want to extract, it is useful to combine pairs of histograms in such a way that the
muon lifetime is removed. The relative asymmetry Apg(t) of two paired histograms Ny, (t) and

Ngr(t) is defined by
_ [NL(t) = BL] = [Nr(t) — Bl

Apr(t) = [NL(t) — Br] + [Ng(t) — Bg]’

(2.10)

where B and Bp are the random backgrounds (see Secs. 2.5.2 and 2.5.1) for the respective
histograms (Fig. 2.6). The only reminder of the muon’s exponential decay (e_t/ TH) will be
that, neglecting the random background, the error bars increase approximately exponentially
(oc e+%t/ Tl‘) for the bins corresponding to longer times. Except for the exponential growth of

the error bars, the asymmetry Apg(t) is analogous to an NMR free induction decay (FID).

The experimental asymmetry A in the positron distribution registered by scintillation counters
is approximately, but not exactly, equal to a (see Eq. 2.6). It is reduced because the muon beam is

not always 100% polarized and because the positron polarization is averaged over the solid angle
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6738: U.B.C. YBa,Cus0g95 T=100, 100G, angle 7.65 degrees
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Figure 2.6: Experimental two-spectrum histogram of raw asymmetry vs. time showing muon
precession. Both the applied field and the muon spin are in the X-Z plane (see Fig. 2.10), with
the muon spin at an angle of 97.85° from the Z axis and the applied field of 100 G at an angle

A~

of 7.85° from the Z axis. The UP-DOWN (X) raw asymmetry is shown by the squares, the
RIGHT-LEFT (Y) by triangles and FORWARD-BACKWARD (Z) by circles. If the applied
field were exactly along the Z axis, the FORWARD-BACKWARD asymmetry would show no
oscillations. (The laboratory coordinate system X-YZ is defined in Fig. 2.3. The coordinate
system Z-§-Z is reserved for the sample.)

which a counter subtends, but at the same time it is increased because there is positron degrader
between the decaying muon and the positron counters. Any material which positrons pass through
acts as positron degrader by absorbing the lower energy positrons with their lower asymmetry but
transmitting higher energy positrons with their higher asymmetry. In our apparatus, the sample

itself, the cryostat walls and optional carbon degraders* all act as positron degrader.

For a TF geometry with the applied field H (giving rise to an internal field B=BZ ) perpen-
dicular to Y (LEFT and RIGHT counters), the signal observed in the absence of depolarization
is

Apr(t) = ALEPy (t) = ALE cos(y,Bt + ¢) = AL cos(2nvt + ¢), (2.11)

where ALR is the empirical asymmetry maximum (obtained when Py = 1), v = ;—”B is the muon
s

*In the past, blocks of carbon have been placed between the sample and the positron counters. Because this
lowers the measured positron event rate and because detector geometries are rather tight, it is now common practice
at TRIUMF to leave out additional positron degrading material.



26 CHAPTER 2. BASICS OF MUON SPIN ROTATION AND RELAXATION

precession frequency, ;—“ = 0.01355342(40.51 ppm) MHzG~![42] is the gyromagnetic ratio and
v

¢ is the initial phase. The maximum measurable asymmetry A% will be ~ 33% (see Sec. 2.2)
due to the kinematics of muon decay; this may be reduced by counter geometry or increased by

addition of degraders.

If the local field [B(7) = Bx(7)X + By (7)Y + Bz(7)Z] is not exactly equal to the average
total internal field B, = B,Z, the polarization Py (t) in the ¥ direction (LEFT and RIGHT
counters) for a muon stopping at position 7 can be expressed as[48]

BY(7) , B(7)+ B3(7)
B2(7) B2(7)

Py (t,7) = cos(y, Bt + ¢). (2.12)

with ¢ = 7/2 when the initial polarization P(0) is along the X direction. If the local field is not
constant over the sample, there will be a range of muon precession frequencies. Averaging over

the sample volume gives the time dependence of the ensemble polarization as

lﬂﬂ:/ﬁmﬂM%Q+&ﬂﬂmm&H@, (2.13)
1%
where
_ [ BY(7) .,
G, = v B27) dr (2.14)

is a constant corresponding to portion of the average field which is parallel to the initial muon
spin and Gyy(t) is a “dephasing” function representing a decrease in the magnitude of the av-
erage polarization. (This simple treatment is only valid for symmetric local field distributions
as discussed in Sec. 2.6.3.) Exponential relaxation [ny(t) = e_rt] is usually assumed when
the local fields are fluctuating fast enough that the “motional narrowing” limit is in effect.[49,
Sec. X.I] When the muons are static and any magnetic structure in the solid is static, Gaussian
dephasing Gyy (t) = e_%02t2 is often used as an Ansatz until an appropriate theoretical descrip-
tion of the muon depolarization is formulated. In a high precision experiment, this Ansatz can

lead to qualitative and quantitative misinterpretation.
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2.5 Sources of Experimental Distortions

The previous section briefly described how the asymmetry A(t) is extracted from the data. How-
ever, experimental realities such as differences in efficiency within a pair of counters (which in-
cludes the response of the PMTs, the discrimination threshold in the electronics and the physical
characteristics of the scintillators and light guides), differences in solid angle subtended by a pair
of counters and errors in the random background estimate can distort the calculations. This
section describes the expected distortions and explains how to correct for them. Parts of this

discussion also appear in Ref. [50].

2.5.1 Corrected Asymmetry Plots

The events recorded in a single histogram (labelled 7) can be described by
Ni(t) = Nie” /w1 + 4;()] + B, (2.15)

where 7, = 2.19709(5) s is the muon lifetime. The index i is one of £X, Y or £Z (see
Fig. 2.10). The asymmetry function A;(t) is equal to a constant A! times P;(t), the projection
of the muon polarization function P'(t) onto the i*® detector symmetry axis. The initial asym-
metry A%, which is usually between 0.2 and 0.4, contains factors related to the positron emission
probability distribution (Sec. 2.2), positron absorption in the apparatus and the solid angle of the
counter. With larger counter solid angles, the asymmetry is reduced due to a spatial averaging
of cos @ in Eq. 2.6. (On the other hand, a larger counter has a higher detection efficiency.) The
constant term B; is the random background signal due to false events caused by, for instance, the
portion of the dark current noise in the photomultiplier tubes (PMTs) which has a larger voltage
than the discrimination level set in the electronics. Cosmic rays and positron contamination in
the muon beam can also contribute to the random background. The random background is as-
sumed to be independent of the muon arrival time which starts the clock for the histogram. This

contrasts with the exponential decay (due to the muon lifetime) in the number of “good” events.

In the ideal case, opposing counters (i and —i) should see the same signal 180° out of phase.

However, differences in positron absorption, PMT efficiency, discrimination level and counter
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position relative to the beam axis (since the beam has positron contamination) will affect both
the random background levels (B; and B_;) and the normalization of the number of events (N{
and N, %). Differences in counter solid angle, counter efficiency and positron absorption will affect
the normalization and the average decay asymmetry (A% and A;%). For a pair of counters (i

and —i), these effects can be summarized as

Ni(t) = Nie t/Tu [1 + A;P(t)] + B;,

N_i(t) = aNie t/Tu [1 — B4, P(t)] + B_, (2.16)

where o = N, */N! and 8 = |A_;|/|A;]. Note that the second equation assumes that the counters

are ezactly opposite each other so that
P—i(ta ¢) = ]Ji(ta ¢+7T) = _I)i(ta ¢) (217)

where ¢ is the initial phase of the muon polarization.

The experimental “raw asymmetry” is defined by

Araw(t)

_ [Ni(#) — Bi] — [N—i(t) — B—_]
—— (2.18)

~ [Ni(t) — Bi] + [N—(2) il
where the random background has been explicitly subtracted from each histogram. The exponen-
tial decay is automatically removed by cancellation in the numerator and the denominator. This
means that the raw asymmetry can be used to present experimental data quickly in such a way
that the muon lifetime is removed without fitting beforehand. It is particularly useful for viewing
zero- and longitudinal-field data. However, the raw asymmetry depends on « and 8, which can
only be accurately determined by fitting. In its favor, the statistical error associated with the
raw asymmetry is approximately a factor of 1/4/2 smaller than that for a single histogram; this
improves the results of fits to the asymmetry and reduces noise in the Fourier transform of the

asymmetry (see Secs. 3.3.1 and 3.3.2.)

The raw asymmetry can be related to the “corrected” asymmetry A(t) = A P;(t) by

_A@)(ef+1) — (e —1)
Al = 04D — A (B — 1) (2.19)
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Conversely, the corrected asymmetry can be extracted from the raw asymmetry by

A ()@ +1) = (@ —1)
(@B + 1) + Araw (t) (aff — 1).

In the case of § = 1, the corrected asymmetry is given expressly in terms of “primitive” quantities

A(t) = ALP(t) = (2-20)

by

A(p) = Dilt) = Bl ~ [N-i(t) - g_?] o

~ () — B + [Ni(t) — (2.21)

Interesting distortions arise in the raw asymmetry due to the effects of a, 8 and poor back-
ground subtraction. Figs. 2.7.a and 2.7.b show the effect of & < 1 on the raw histogram (nor-
malized by N!) and the asymmetry A(t), with A% = 0.3. The corrected asymmetry is centered
about zero whereas the raw asymmetry has an asymptotic value of 0.6, which produces a large
zero frequency peak in the real Fourier transform (Fig. 2.7.c). At early times, the raw asymmetry
is not symmetric about the asymptotic value of 0.6, but appears slightly elongated below and
compressed above. This produces spurious peaks in the Fourier transform at integer multiples
of the signal’s true frequency alternatively in phase and 180° out of phase with the signal. The
FORWARD/BACKWARD raw asymmetry in Fig. 2.6 is an example of experimental data which
has a value of «a far from unity. Figs. 2.7.d, 2.7.e, and 2.7.f show the effect of § < 1, which is
surprisingly similar to the effect of a. The major difference is that there is no offset in the asym-
metry (hence nearly no zero frequency peak in the Fourier transform) and the second harmonic
is smaller in the Fourier transform. Since these “distortions” in the raw asymmetry arise from

mismatched counters, Fourier transforms of single histograms will not show them.

2.5.2 Random Background

The random background rate is estimated either by fitting or by accumulating the positron events
which occur just before every muon enters the sample (see Fig. 2.4). Since the passage of the
muon through the muon counter defines time zero, positron events occuring before that are said

to be events at negative times. The background rate may be due to the following sources:

1. Dark current noise in the PMTs which has a larger voltage than the discrimination level set

in the electronics.
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Figure 2.7:

a. Raw histograms for two counters, with & = 0.25 and 8 = 1.0. Backgrounds set to B; = 0.04
and B_; = 0.01. (V! has been divided out of both spectra.)

b. Raw asymmetry (centered about 0.6) and corrected asymmetry (centered about 0.0) for
a=0.25 and 8 = 1.0.

c. Real fast Fourier transform of the raw asymmetry for o = 0.25 and 8 = 1.0 over only first 9
ps. The main peak at 1.355 Mhz corresponds to an average field of 100 G.

d. Raw histograms for two counters, with a = 1.0 and 8 = 0.25. Backgrounds set to B; = 0.04
and B_; = 0.04.

e. Raw asymmetry [Araw(0) ~ 0.175] and corrected asymmetry [A(0) = 0.3] for @ = 0.25 and
B =1.0.

f. Real fast Fourier transform of the raw asymmetry for a« = 1.0 and 8 = 0.25 over only first 9
us. The main peak at 1.355 Mhz corresponds to an average field of 100 G.
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2. Cosmic ray muons hitting the counters.
3. Positrons from the production target not filtered out of the beam.

4. ~-ray showers produced by positrons passing through the lead shielding around the final
collimator. The positrons are predominantly those produced by the decay of muons stopped

by the collimator.

Note that a 7-ray shower may trigger the muon counter and then a positron counter (or in the
other order), so a lot of false events will be recorded close to zero time and a few false events will
be recorded at long times. This is not a source of truly random background, nor does it have
a time dependence exhibiting the muon lifetime. Assuming that -ray shower events are truly

random will produce terrible distortions in the asymmetry spectra.

In TF experiments, one may easily determine the random background with complete fits over
positive times. In zero field and longitudinal field experiments, it is often difficult to distinguish
between the relative contributions of the asymmetry, the exponential muon decay, the mismatch in
counters and the background. In these cases, it is much better to measure the random background

using negative times.

Problems in background subtraction are insidious. One can demonstrate the effect of an unex-
pected time dependent background in which the number of background events decreases linearly
with time. Though collimator shielding problems probably produce a more rapidly decreasing
behaviour, even a linearly decreasing background qualitatively shows the distortions observed

experimentally. Overestimating a background signal which is truly random shows the same effect.

After subtracting an overestimated but random background from the single counter histogram,
the background “corrected” data will be distorted, with the number of events actually going
negative at long times! An asymmetry plot which combines two such histograms has a resonance-
like distortion where the asymmetry goes to oo at the time where the sum of the two spectra
equals zero (see the denominator in Eq. 2.18) since the corrected number of counts have opposite
signs. For an overestimated but random background, Fig. 2.8.a shows the absolute value of the

raw histograms, after background subtraction, Fig. 2.8.b shows the asymmetry plot and Fig. 2.8.c
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Figure 2.8:

a. Absolute value of the raw histograms for two counters after incorrect background subtraction
resulting in a residual constant background 6 B; = —0.0108 and §B_; = —0.0036.

b. Raw asymmetry for 6 B; = —0.0108 and 6§ B_; = —0.0036.

c. Real fast Fourier transform of the raw asymmetry for §B; = —0.0108 and 6 B_; = —0.0036,
over only first 9 us.

d. Absolute value of the raw histograms for two counters, after incorrect background subtraction
resulting in a residual time-dependent background é B; = —0.0009¢ and 6 B_; = —0.0003t.

e. Raw asymmetry for 6B; = —0.0009¢ and 6 B_; = —0.0003¢.

f. Real fast Fourier transform of the raw asymmetry for §B; = —0.0009¢ and éB_; = —0.0003¢,
over only first 9 us.
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shows the resulting real Fourier transform. If the Fourier transform is done over a time range
which includes the distortion, it will be completely spoiled by an oscillatory signal with a period
equal to the time at which the asymmetry crosses zero. Over a shorter time range, the downturn

in the asymmetry produces a broad negative peak near zero frequency.

Figs. 2.8.d, 2.8.e and 2.8.f show what happens when a portion of the background is linearly
decreasing. This is very similar to an incorrectly determined flat background, since making an
asymmetry plot by combining two such histograms with slightly different slopes in the random
background also results in a resonance-like distortion where the asymmetry goes to +o0o. This
is a very serious problem since no existing uSR data analysis software is equipped to handle
time dependent background signals for single-histograms or for asymmetry plots. (Nor could it

be—what time dependence would one assume?)

2.5.3 Relative Phase of Counters

The distortions described in the above two sections show up in the Fourier transform as artificial
enhancements of the zero frequency peak or as harmonics which are 0° or 180° out of phase
from the true signal. The harmonics with phase 0° and 180° occur when the asymmetry plot
is distorted vertically by a and 8. In this section section I describe distortions that show up
as harmonics with phase 90° and 270° which occur when there are phase mismatches between

opposite counters.

Fig. 2.9.a shows a pair of counters having a relative phase ¢, (over and above the assumed
180° taken into account by the opposite signs of the asymmetry in Eq. 2.16) because they are not
centered about the sample. The effect of the relative phase on the raw histograms (Fig. 2.9.b)

can be expressed as follows:

Ni(t) = exp(—1/7,) |1+ A G(t) cos (27r1/t - %)] + B;
N_i(t) = exp(~1/7,) [1 — ALG(#) cos <2m + %)] + B, (2.22)

where I have used

Al P;(t) = AL G(t) cos <27r1/t — %) (2.23)
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Figure 2.9: Effect of Relative Phase Between Counters

a. Sketch of a pair of counters having a relative phase ¢, = 10°. (The sample is at the origin.)
b. Raw histograms for two counters with relative phase of 10° (without random background).
c. Raw asymmetry for relative phase of 10°. (Nothing looks unusual “by eye.”)

d. Real fast Fourier transform of the raw asymmetry for relative phase of 10°,

over the first 9 us. The amplitude has been restricted to emphasize the distortion at the second
harmonic.
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to explicitly show the asymmetry’s dependence on the relative phase ¢,.

The raw asymmetry (Fig. 2.9.c) is given by

. B AiG(t) cos(2mvt) cos(¢r /2)
Araw(t) - 14 AZOG(t) sin(271'l/t) Sin(¢r/2) ’

(2.24)

which is just the true asymmetry [A(t) = AL P(t) = ALG(t) cos(2mvt)] modified by a term with

period 1/v. For small angles ¢,, the raw asymmetry can be written in the form
Al (1) = a(t) cos(2mt) cos(¢y /2) + b(t) sin(4nvt) sin(ey). (2.25)

As seen in Fig. 2.9.d, this produces a second harmonic in the FFT which is 90° out of phase

relative to the real signal.

Relative phase distortions are often present due to geometrical misalignment of counters,
inhomogeneous efficiencies of the detectors and timing misalignments, but it is not clear how to
correct for them.! In high magnetic fields (where the linewidth of the experimental data is much
smaller than the applied field) relative phase is not a problem in the Fourier transforms because
the harmonics are very far from the true signal. Distortions appeared for the data taken at fields
of 100 G (see Fig. 5.7). Fortunately, the FFT for a single counter histogram is not affected. To

my knowledge, no one has ever drawn attention to this problem before.

2.6 Full Vector Treatment of Polarization Evolution

2.6.1 Motivation

It is easy to visualize a single muon precessing in a magnetic field E, even if the field and initial
spin directions are not aligned with respect to the laboratory reference frame X-¥-Z. The muon
spin precesses as a function of time in a cone about the field. This action can be projected onto
the plane perpendicular to the i*® coordinate axis using s; + a; cos(yuBt+ ¢;) fori = X, Y and Z

where the oscillatory amplitude a; and the non-oscillatory amplitude s; are < 1. These projections

 Adjusting ¢, (the place in the histogram defined as the time ¢ = 0) such that ¢, = 0 is tempting, but then the
dephasing function G(t) will not match at time ¢ for the pair of counter histograms used to produce the asymmetry
plot. This will of course introduce new distortions.
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are simply the components of the muon spin in the laboratory reference frame. If the field and
spin are mutually orthogonal then the cone is actually a plane and there are no non-oscillatory

components (i.e., $;=0).

One can construct and combine the projections for an ensemble of muons stopping through-
out the local field distribution of interest, creating a net polarization. Due to dephasing, the
magnitude of the polarization vector will decrease in time. Generally, the ensemble polarization
cannot conveniently be expressed analytically for arbitrary field distributions. An exception is
the polarization produced by a Gaussian distribution of dipolar fields, which in zero applied field

yields a static Gaussian Kubo-Toyabe function[51]
1 A242
P(t) = L+ 2(1 - A%2) e 271 (2.26)

with the dephasing rate A determined by the mean square of the local field components

A? 2 2 2

— = (Bg) = (By) = (B;)- (2.:27)
Tu

For a field B, which is much larger than the mean local field variation and is applied perpendic-

ularly to the muon spin, the polarization is given by

1,242
Py(t)=¢ 2 cos(y,Bot) (2.28)
with the dephasing rate ¢ determined by
2 = (B, — B,)*). (2.29)
T

This section describes the muon polarization function for an arbitrary distribution of local
fields and an arbitrary initial muon spin direction. It expresses polarization (which can be difficult
to visualize) using vector notation, with particular emphasis on the time-dependent oscillatory and
non-oscillatory amplitudes. It describes how the theoretical net polarization can be cast in a form
which is convenient for “table” fits. Secs. 3.3.2 and 4.8 discuss how this affects the results of Fourier
transforms and how to fit data with more than one source of local field inhomogeneity. These
skills are needed to rigorously fit SR data taken in the anisotropic superconductor YBasCusOg.95

in low fields applied at all angles relative to the ¢ axis (see Ch. 5).
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Figure 2.10: Cube of positron counters, with only a portion of each counter shown. The labels
correspond as following: U = UP, D = DOWN, L = LEFT, R = RIGHT, B = BACK and F =
FORWARD. The muon momentum is along the Z direction, the initial muon spin is at an angle
of 120° from Z and the applied field (the arrow) is at an angle of 30° from Z. The bull’s eye
shows the muon precession cone.

Note that arbitrary vectors are indicated by “arrows” (e.g., E) while unit vector are indicated

by “hats” (e.g., ). (In this thesis, “hats” never indicate quantum mechanical operators.)

2.6.2 Positron Counter and Local Field Reference Frames

Muon polarization can be examined from different reference frames. The positron counters form a
reference frame [X—YZ], with the TOP-BOTTOM counters defining X, the RIGHT-LEFT coun-
ters defining ¥ and the FORWARD-BACKWARD counters defining Z (see Fig. 2.10). The
components in the counter frame are specified by subscripts of upper case X, Y and Z. The
signal observed in a positron counter is simply a projection of the muon polarization on the plane
perpendicular to one of the counter reference frame’s axes; this makes the counter reference frame

convenient for data analysis.

Another reference frame [£-¢-2] is formed by setting Z parallel to the average internal field B,.
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Figure 2.11: The muon momentum is along the Z direction. The average internal field B, (the
cone-headed arrow) is along the Z axis at an angle 6 to Z, and is constrained to lie in the X-Z
plane. The initial muon polarization (solid arrow) is at an angle ¢ = 90° from the Z axis and
the shaded area shows the initial phase of ¢ from the Z axis in the Z-g plane. (If ¢ = 0, then
the initial muon polarization is also in the X-Z plane.) The bull’s eye shows the muon precession
cone, which is a flat plate in the Z-§ plane when ¢ = 90°. (For the low field experiment described
in Chs. 4 and 5, ¢ was set to 90° when experimental constraints allowed.)

The applied field H, is assumed to be parallel to B, but perpendicular to 17, which places Z in the
X-Z plane. This is equivalent fixing § = Y, which in turn forces X-Z and 2-2 to be the same plane
(though rotated by an angle 0; see Fig. 2.11). The components of the average internal field frame
are specified by subscripts of lower case z, y and z. This frame is better than the counter frame
for some calculations, especially when the applied field is not along one of the counter frame axes.
It corresponds to the coordinate system used in Ch. 4 for the field distribution in an anisotropic

superconductor.

In the average internal field reference frame, the initial ensemble muon polarization P (0) is at
an angle ¢ to the 2z axis and is rotated by an angle of 9 in the Z-§ plane. Assuming the muons

are initially fully polarized, P(0) = P(0) is given by
P,(0) sin ¢ cos 9

P,(0) | =| singsiny (2.30)
P,(0) cos ¢
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where the angle ¢ is chosen by use of a muon spin rotator which operates in the Z-Z plane
and the angle v is the “initial phase” of the muon polarization (which should not be confused
with counter’s residual phase ¢, in Eq. 2.24). When the angle ¢ is 90° the applied field and
muon polarization are perpendicular, so it is called a “transverse field” (TF) experiment. When
the angle ¢ is 0° or 180°, the applied field and muon polarization are parallel so it is called a
“longitudinal field” (LF) experiment. In between it is called a “skewed field” (SF) experiment.[52]
For this thesis, I performed mostly TF experiments; when the spin-rotator did not allow for TF,

I performed SF experiments (¢ < 90°) as close as possible to TF.

During the time of flight from the spin rotator to the sample, the net muon polarization
may experience rotation because of the fringe fields from experimental magnets and any ambient
magnetic field; this may contribute to either ¢ or % or both. Contributions to ¢ are ignored,
though they could be approximately treated as a reduction in the transverse component of the
polarization. Contributions to 1, typically varying from a few degrees for ambient and fringe fields
on the order of several gauss to one or more complete precessions for applied fields of several tesla,

are accommodated using Eq. 2.30.

The counter frame is related to the internal field frame by rotation about the § = ¥ axis using

the rotation matrix

cos@ 0 sinf
RO=| 0o 1 0 | (2.31)
—sinf 0 cosf

This transformation gives the average field B, in the counter frame [X-¥-Z] as

Bx B, sinf
By |=RO)| B, |[=| 0 |Bo (2.32)
By B, cos @

and the initial muon spin polarization P(0) as
Px(0) cos @ sin ¢ cos 1) + sin 6 cos ¢ P,(0)
Py(0) | = sin ¢ sin 9 =R(0) | P, 0) |- (2.33)
Pz(0) —sin @ sin ¢ cos 1 + cos O cos ¢ P,(0)
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2.6.3 Vectorized Polarization Functions

Consider a sub-ensemble of muons stopped at positions 7 in the sample which all have the same lo-
cal field B () not necessarily equal to the average field B, = B,2 in either direction or magnitude.

The unit vector in the direction of the local magnetic field is given by

B(7) = B(7) .
B B(7)

(2.34)

The net polarization for the sub-ensemble is a vector precessing in space, forming a cone centered
about the local magnetic field. The height of the cone is given by the amplitude of the non-

oscillatory component of the polarization,
P|(0,7) = P(0) - B(7) (2.35)
and the radius of its base is given by the amplitude of the oscillatory component,

P(0,7) = ‘B(F)XP(O)‘

P(0) — PH((),F)B(F)‘ . (2.36)

In Turner’s nomenclature,[52] “coplanar transverse” polarization refers to the polarization projec-
tion along an axis lying in the plane defined by the average field direction Z and the initial muon
spin direction and “perpendicular transverse” polarization refers to the projection along the axis
perpendicular to that plane. For the sub-ensemble at 7, I will restrict the definition of coplanar
transverse polarization to the projection along a coplanar axis which is perpendicular to the local

field direction B(7). This gives the sub-ensemble coplanar transverse polarization direction as

R P(0) — By(0,7)B(F)
io(7) = ap(7F) X B(F) = 2.37
e (7) = ap(7) x B(7) P.(0.7) , (2.37)
and the sub-ensemble perpendicular transverse polarization direction as
. B(7) x P(0
ip(7) = B(F) x ao(7) = 20 X LO) (2.38)

PJ_ (Oa F)
Together, B(7), ic(7) and dp(7) form an orthogonal basis for a reference frame appropriate for

the sub-ensemble of muons at position 7.
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For example, if the initial phase 1 of the polarization is zero (see Fig. 2.11) and B(7) || 2
(which is not always the case even though the average field direction EO defines 2), the unit
vector for the non-oscillatory component of the polarization is B (7) = 2, the coplanar transverse
direction is 4¢(7) = # and the perpendicular transverse direction is 4p(7) = 9. Non-zero values
for 1 will simply rotate ic(7) and 4p(7) in the Z-§ plane. If, in addition, it is a TF experiment

(¢ = m/2) then P(7) = 0 and P, (0,7) = P(0).

Using the aforementioned muon sub-ensemble reference frame, we can look at the time evo-
lution of the total muon polarization. At time zero, the polarization at point 7 in the sample is
given by

A~

P(0) = P(0,7)B(F) + PL(0,7)ac(F). (2.39)

Usually we assume that the muons are initially fully polarized, hence P(0) = P(0). If we assum-
ing that E(F ) is time independent and that there are no irreversible relaxation processes (e.g.,
spin-spin interactions between the muon, electrons and/or nuclei or muon diffusion), then the
magnitude of the sub-ensemble polarization is constant Hﬁ(t,f’ )‘ = 1] and its vector value is at
time ¢ is given by

—

P(t,7) = Py(0,7)B(7)

+ P (0,7){cos [y, B(7)t) ic(7) + sin [, B(7)t] ap (7) }. (2.40)

Averaging over the spatial distribution of local fields B(7), the muon polarization for the

entire sample is given by

Po) = 4 [ |monBe

+ PL(0,7) {cos [yuB(F) ic(7) + sin [, BF)1] ap(f)}] ar. (2.41)

where V' is the volume of the sample. The magnitude of P(t) decreases with time because there
is a range of local field magnitudes (the different sub-ensembles precess at different rates so the
polarization amplitude decreases over time) and because there is a range of local field directions
(the precession cones for different sub-ensembles point in different directions so the polarization

amplitude decreases when they are averaged).
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At long times, the oscillatory portion dies out and the polarization approaches a constant

asymptote:
P(t—o0) = By(t) = % VP||(0,F)B(F)dT
_ % [ [P-B@)] B@)ar, (2.42)

which is the average non-oscillatory polarization. It is the vector average of the axes of the
precession cones for all sub-ensembles of muons at positions with different local field magnitudes
and directions. Due to the unit vector B(7), one might expect ]3||(t) to be in the direction
in the direction of the average field, 2. However, when the initial muon polarization P(0) is
perpendicular to the average field direction (¢ = 7/2), positive and negative contributions from
the inner product P(0) - B(7) will tend to cancel out the Z component in 13||(t), leaving 13||(t)
approximately in the direction of the original polarization direction 13(0) In the case of certain
field distributions (see Secs. 2.6.4 and 2.6.5), P'H(t) will be exactly parallel to P(0). If we define

the precessing portion of the average polarization as
1 L, N . R S,
P (t) = % /V Py (0,7) {cos [YuB(7)t] uc(7) + sin [y, B(7)t] 4p (7 )} dr, (2.43)
the total time-dependent polarization vector can be expressed as
P(t) = P(t—o0) + P (1). (2.44)
While Eq. 2.41 clearly demonstrates the average over all sub-ensemble muon precession cones,

some additional insights can be facilitated if, instead, it is expressed explicitly in terms of the

initial muon polarization:

B = %/V{P(O)-B(F)}B(F)
+ cos [y, B()1] {P(0) - [P(0) - B(F)] B(7)}
+ sin [y, B(7)1] {B(r) x 15(0)} dr. (2.45)

where V is the volume of the sample. If there are positron counters along the +C directions,

the measured time-dependent asymmetry signal Ac(T) = AS Pc(t) will be proportional to the
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projection of the polarization along the € direction Po(t) = P(t)-C:
- A 1 A A A A
Pe(t) = P)-C = 4 [P(0)- B@)] [BG)-C] dr
v
. ~ 1 o o
+ P(0)-C v/, o [y, B(7)t] dr
1 5 Sl [ By A g1 g
- /V [2(0)- BF)) [B()-C] cos [y B(F)] dr
41 / [A(O) X é] -B(7) sin[y,B(7)t] dF, (2.46)
Vv
using the vector identity
[B(7) x P(0)] -C = [P(0) x C] -B(). (2.47)

The initial muon polarization direction P(0) and the counter direction C' are obviously inde-
pendent of the position 7 of the sub-ensemble muons, so they can be moved outside the integral
in Eq. 2.46. To achieve this result we define several quantities in terms of their average values
over regions of space where the magnitude of the local field has approximately the same value.

The first quantity is the “correlation density” matrix:

7 1 A= S7=\ 1 —
Ua(B')dB' = o / [5-B()] [BG)] dF (2.48)
|- <
where j,1 € {z,y, 2} and the integral is restricted to those positions 7 for which magnitude of the
local field is within dB’ of the value B’. The second quantity is the vector 1% representing the

partial average of the local field unit vector directions,

7 (! r_ 1 R
V(B)dB' = / B(7) dr (2.49)

|| BB <4
Finally, the scalar probability distribution of the magnetic field’s magnitude is defined as:
volume with HB'(F)‘ — Bl < dTB’

total volume

n (B') dB'

1
- - / 1d7, (2.50)
||B()|-B|<4"
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These quantities allow the projection of the polarization in the C direction to be expressed as
P@t)-C = P(0)- {/ U(B') dB’} .C
+ P(0) - C’{ n (B') cos [y, B't] dB'}
— P(0) - { / U(B') cos [y,B't] dB’} .C
+ ( P(0) x é) : {/V(B ) sin [y, B't] dB' } (2.51)
where the integrals are only over the magnitude of the local field.

Note that in the Z-§-Z reference frame, the initial polarization (Eq. 2.30) can be expressed as
]5(0) — P, = sin ¢ cos 9 + sin ¢ sin g + cos ¢2, (2.52)

where P, is introduced as an abbreviation for P(0). Since Eq. 2.51 is linear in P(0), the time

evolution of the polarization is expressed as

P(t) = sin ¢ cos ) P(t; P, = &) + sin ¢psinep P(t; P, = §) + cos ¢ P(t; B, = 2) (2.53)

A~

where ﬁ(t; P, = j) is the time-dependent polarization vector that would be observed if the initial
polarization were exactly along the direction j. If one wishes to fit many different data sets which
have different values of the angles ¢ and 1, it is usually more convenient to calculate P (t; B, = z),
P(t; B, = ) and P(t; P, = %) once and use Eq. 2.53 than to calculate P(t) using Eq. 2.41 for each

data set.

2.6.4 Discussion of Different Categories of Field Distributions

Note that the average field B, is not necessarily equal to its magnitude B, times the volume

average of its direction:

_ v/Ef‘)dr_/BV )dB
B/ B)dB = B—/B : (2.54)
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The Z-7-z reference frame is partly defined by the average field being along the Z direction,

B, = B,Zz. Therefore, while the transverse components of B, are zero

(B (P))y = v Vﬁc -B(f)df=0
B,y = [ 9 B@dr=o. (2.55)

the average of the transverse components of the local field unit vector direction are possibly

non-zero:

G-B)y = — [ §- B di = /y . V(B')dB' % 0. (2.56)

We will now define what is a “non-correlated” field distribution. The first condition is that if
the average of the component of the local field along a certain direction is zero, then the average

of that component of the local field’s unit vector along the same direction is also zero:
(3-B(M)y =0 = (j-B()v =0. (2.57)
If we subtract the average field B, to form the mean deviation from the average, by definition
(G- [B@) - Bo|)v =0, (2.58)
then the first criterion for a non-correlated field distribution becomes simply
(G- [B() = Bo|)v =0 (2.59)

which holds for all 7 including B, = 5. The second condition is that the different components of

the local field’s unit vector are uncorrelated
Uy (B') = 6;U;;(B'), (2.60)

that is, the off-diagonal elements of U (B') are zero. [The diagonal elements U;;(B') are always non-

negative.] A field distribution which does not meet both of these restrictions is called “correlated.”

A symmetric field distribution is defined to be a non-correlated distribution with the additional

restriction that the probability distribution of the magnetic field’s magnitude is symmetric about
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the average field’s magnitude:

™™ (B, — AB) = n¥™(B, + AB). (2.61)

In the case of a non-correlated field distribution, Eq. 2.51 reduces to

p
+(P(0) x €) - [ z-V(B)sin[y,B'%] dB', (2.62)

Note that if B(7) = B(7)z, then V(B) = n(B) 2. A non-correlated distribution with ¢ = /2
(i.e., initial polarization perpendicular to Z) produces a non-oscillatory signal in the direction of
the original polarization ]5(0), while the non-oscillatory polarization in correlated distributions
may or may not be parallel to 15(0) Moreover, for non-correlated distributions with the initial
polarization at an angle ¢ from the 2 axis and v from the & axis (see Eq. 2.53), the in-phase
oscillatory signal for P2¢(¢) [involving the integral over cos (7, Bt)] will be in the P(0) — []3 (0) - 73] F
direction and the out-of-phase oscillatory signal [involving the integral over sin (y,Bt)] will be in

the 2 x P(0) direction.

In the non-correlated case, if P, = 2, P (t) will never develop any z or y components and if
P, is along # or 4 then 2 - P"(¢) will remain zero forever. For correlated field distributions, the
terms which would be zero for the non-correlated case may produce some admixing of the in-phase
and out-of-phase terms for the projections (Eq. 2.51) along the P(0) — [}5(0) . 2] 2, 2 x P(0) and

2 directions.

2.6.5 Uniaxial Local Field Polarization Functions

In this section, we consider “uniaxial local field” (ULF) distributions where the local field is always

parallel to the average field

B(f)-& = 0
B(F)-9 = 0

B(F)=B(@): or B(F)=% (2.63)
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and the local field magnitudes have a distribution about B, whose characteristic width

2>1/2

— (i) - B,?)" (2.64)

A = <‘§(F) — By#

is independent (or nearly so) of the average field B,. This is appropriate for isotropic supercon-
ductors and anisotropic superconductors with an applied field parallel to one of the principal axes

(see Ch. 4).

When the local fields are parallel to the average field [B(7) = B(7) 2] and the initial polariza-

tion is along 2, the time-dependent polarization vector is constant
PY¥(t: P, = 2) = 2. (2.65)
When the initial polarization is along Z (corresponding to 1; = 0), the polarization function is
given by
DULF o 1 _ “ . R N o
P (; Po=%) = v {cos [YuB(7)t] & + sin [y, B(7)t] y} dr
1%

= /n (B) {cos [vuBt] & + sin [y, Bt] g}} dB (2.66)

and when it is along § (corresponding to 9, = 7/2)

—

~ . 1 X . . . R N
P (P =19) = v /V {— sin [y, B(7)t] & + cos [y,B(7)t] y} dr

= /n (B) {— sin [y, Bt] & + cos [y, Bt] g}} dB. (2.67)
From Eq. 2.53, the total polarization function in the special case of uniaxial local fields is

PUF(4) = & sinqS/n (B) cos [y, Bt+1] dB + Qsin¢/n (B) sin [y, Bt+] dB + 2cos ¢.  (2.68)

One would like to fit experimental data directly to the theoretical polarization function. If
the average period w%o of the precession is much shorter than the time scale over which the
polarization envelope changes, then it may be convenient to store the data in a rotating reference
frame with a frequency of vrg, which is relatively close to the polarization function’s average

frequency v,. [The rotating reference frame (RRF) is discussed in more detail in Sec. 3.2.1.]
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Consider the “real” and “imaginary” RRF polarization projections Gx°" and G7 ", which are

defined as

G0 = 4 [ cos{mBE) ~ Buuilt) dF
_ /0 1 (B) cos {7 [B — Busi]t} dB
_ /0 () cos {27 [V — vem] £} dv
G = [ sin{wlBE) - Buwilt} dF
_ /0 . (B) sin {vu [B — Bus.] ¢} dB
_ /0 " (v) sin {27 [ — vest] t} dB, (2.69)

where Brg., is the magnetic field in the “rotating reference frame” (see Sec. 3.2.1) for the stored

tables GLP"(¢) and GT®"(t)} and

n,(v)dv =mn, (7—“3) Mg =n (B)dB (2.70)
27 2m

describes the probability distribution of local field strengths and/or muon precession frequencies

(defined in Eq. 2.50.) The polarization functions can be expressed as

ﬁTBL(t) = Zcos ¢+ Zsin¢ [GR (1) cos(yutBrar+1) — G725 (¢) sin(y,t Brer+1)]

+ §sin ¢ [GRP"(t) sin(y,tBrar+1) + G7 P4 (t) cos(yutBrar+9)] - (2.71)

It is impractical to construct new functions GEP"(t) and GTP"(¢) for every possible field dis-
tribution; however, in many cases, the shape of n(B) stays the same and only the average field
B, changes in some family of field distributions. In these cases one may introduce an equivalent
scaling of G®"(¢) and G7""(t). When fitting, one retrieves G;°"(t) and G ®"(¢) from the table

using a scaling rule such as: Ezperimental time tex, corresponds to table time tyy, by
teprexp = tthAtha (2'72)

where Ay, is the characteristic width of the field distribution from which GEP"(¢) and GT®"(t)

were calculated and Aeyp, is the actual width in the sample. If we assume that B.g, is chosen

For instance, one might chose Brgr to be the average field in a type II superconductor’s vortex lattice for some
typical experimental field, or one might use the minimum field as Brgr, or even Brgr, = 0. The validity of this
approach clearly depends on the Brgi-independence of n(v) over the desired range of Brgy..
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to be the theoretical polarization function’s average field, Brg;, = B{", and if the shape of n(B)
is also independent of the average field, then it is permissible to express the experimental vector

polarization as

pex 5 A s A X
P*P(t) = Zcos¢+ Tsing [G?L (ﬁt) cos(yutBo+1)

—GrPr (MO Sin(’)/“tBo—i—’(/J)]
Atn

Aex .
+ gsing [GE{BL ( < pt) sin(y,tBo+1))
Agp

Aex
+GTPr ( = pt) cos(fyutBo+¢)] : (2.73)
Atn

Note that, in general, these equations cannot be further simplified unless the field distribution is

symmetric (in both magnitude and direction) about B, and By, = B,, in which case GT®"(t)=0.
This method of fitting the data was used in Ref. [53], but is not used in this thesis.

In those uSR experiments where the average field B, is much larger than the rms variation in
local fields <‘§0 - B (7) ‘2> 1/2, the non-oscillatory portion is negligible in the transverse directions
[Pr(t—00) = 0, Py(t—00) zv 0] even when the local fields are not strictly parallel to the 2z axis. If
the local field distribution is symmetric about the average field (see Eq. 2.61), the oscillatory signal
may be fit with an Ansatz symmetric relaxation function in the time domain, such as a Gaussian

or an exponential. When Brg, = B, and n(v) is exactly symmetric about v, = ;—;;Bo,then

GTPH(t)=0, GE""(t) = Gsym(t) and Eq. 2.71 simplifies to
P77 (t) = Goym(t) cos(yuBt + 4 +c) (2.74)

for the projection along the C** counter axis (C' = X,Y’), where 9)¢ is an extra phase correspond-

ing to the angle of the C*! counter axis relative to the initial muon polarization direction when

% =0.

2.6.6 Some Visual Examples

It can be difficult to have a physical sense of how different kinds of local field inhomogeneities
affect the relative sizes of the oscillatory and non-oscillatory signals observed in the positron

counters. This section presents some visual examples.
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Fig. 2.12 illustrates the effect of a local field which varies in direction but not in magnitude
in a TF experiment. The initial muon polarization is in the X direction (1) = 0) and the average
applied field is in the —Z direction (@ = w and ¢ = —x/2). Consider local field directions which

vary in the X-Z plane (Fig. 2.12.a). At time ¢ = 0, the net polarization will be in the X direction

. L 3r 1
with its maximum magnitude [P(0) = P, = X]. At times ¢t = — and t = = —— the
2 vuBo 2 yuBy

net polarization will be in the ¥ and —Y directions respectively with decreased magnitude. At

the net polarization will be in the —X direction with its minimum magnitude

time t =7
')',uBo’

and at time ¢t = 27 the full polarization will return to the X direction. If the average field

YuDPo
direction is —Z, there will be a small constant polarization P(t—oc) in the +X direction. Now

consider local field directions which vary in the ¥-Z plane (Fig. 2.12.b). At time ¢ = 0, the net

. 1
polarization will be in the X direction with its maximum magnitude. At times { = g—B,
YuDPo
3 N . . A b . i .
and t = 5 B the net polarization will be in the Y and —Y directions respectively with
YuLo

decreased magnitude. At time ¢ = wﬁ, the net polarization will be in the — X direction with
its original magnitude. It follows that the magnitude of P'(t—>oo) is zero because, in this case,
the local field is always perpendicular to the initial muon polarization direction. Therefore, the
time-dependent polarization along X (recorded in the UP and DOWN counters) shows a non-
oscillatory component in Fig. 2.12.a but not in Fig. 2.12.b. Also, in the second case (Fig. 2.12.b)
the £Y counters will record a smaller amplitude precessing signal than the £X counters, which

should not be misinterpreted as a difference between AX and AY. Note that if the magnitudes

of the local fields are all the same, as drawn here, then the magnitude of the polarization will

. . . 27 47
be identical at times ¢, ¢ + , b+ ,
YuBo YuBo

added, the net polarization would “dephase” with increasing time (because muons experiencing

etc. If a distribution of local field magnitudes were

different strength fields will precess at different rates), which would be observed as a reduction of

the polarization over time.

Fig. 2.13 shows a local field with constant magnitude but varying directions for a LF ex-
periment. Precession cones have only been drawn for some local fields in the vZ plane. If we
assume a distribution symmetric about the —Z axis, the polarization in the X-Y plane cancels

out by symmetry but along Z there is a time dependence: at time ¢ = 0 the net polarization is



52 CHAPTER 2. BASICS OF MUON SPIN ROTATION AND RELAXATION

a

N\=

Figure 2.13: LF with directional disorder in the local fields. The initial muon spin is along -7
and the local fields are indicated by the arrows, which are the central axes of the muon precession
cones.

in the —Z direction with maximum magnitude whereas at time tmin = 7 the magnitude has

Boyyu
its minimum value. The relative proportion of the polarization along Z which is oscillatory is

determined by the characteristic size
A/B, = (1 - Z-B)y (2.75)

of the directional disorder of the local field.

2.6.7 Compounding Polarization Functions

Egs. 2.41, 2.42, 2.45 and 2.53 are quite general for static magnetic field distributions arising
from such things as classical nuclear dipolar fields, vortex lattices in type II superconductors and
ferromagnetic, antiferromagnetic or spin glass systems. They can be used to generate polarization
functions either by spatially averaging over a simulation on a grid (as done in Ch. 4 for an

anisotropic superconductor in low fields) or by deriving analytic expressions in simple cases.
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They are limited only by their classical approximation for the local fields as fixed constants in
the problem: for example, if the magnetic field at the muon is due to a single spin—% magnetic
moment, that moment also experiences a field due to the muon and a proper description requires
a full quantum mechanical treatment of the coupled spin system. In the case of vortex lattices in

superconductors, the formulation used here should be rigorous.

Sometimes there may be more than one cause of variations in the local field. Two sources of
field inhomogeneity which are statistically independent can be combined ez post facto into a single
polarization function only if one of them acting alone produces an approximately symmetrical field
distribution. For instance, a superconductor with a vortex lattice will not have a high enough
critical current to screen out the effects of nuclear dipolar moments over very short distances. In
high applied fields, nuclear dipolar fields can be approximately described by a Gaussian relaxation

1

] _1g242
function Ggym(t) = e 27D

, while the vortex lattice always produces an asymmetric function,
described by the general theoretical polarization function (Eq. 2.53). Using Eqs. 2.42 and 2.43,

the time dependent polarization (in the case of a vortex lattice, for example) can be expressed by

13¢:,r/2(t) = cosP(t; P, = &) +sinypP(t; B, = 9)

+singy { B|(t; P, = 9) + PL(t P = 9)} , (2.76)

assuming that the initial muon polarization is perpendicular to the average field direction (¢ =
m/2) and that there is an initial phase of 1. In this case, the compounded polarization function

including the effects of dipolar moments is given by

PO () = cos¢]3||(t;

$=n/2 = %) +Sin¢ﬁ||(t§ Po =1)
B =

P,
+ Goym(t) {cosp Py (t; Py = &) +sinpPL (5P, =)} (277)

The reason for compounding relative to the oscillatory portion of the polarization rather than to

the total polarization will be discussed further in Sec. 3.4.



Chapter 3

Manipulation of SR data

3.1 Introduction

When analysing experimental data, a “bandwidth” of muon precession frequencies is selected by
the choice of time range, initial time binning, subsequent bin packing, and compression through
the use of a rotating reference frame (RRF) transformation. In effect, one is ultimately sensitive
to a small range of frequencies centered about the experimental average frequency. If one does not
choose wisely, statistical noise may overwhelm the details of interest or higher frequencies that
are present may be inadvertently “binned over” in both the asymmetry signal and in the Fourier
transform. Many uSR researchers understand these concepts when fitting time-series asymmetry
signals, but are less confident when performing Fourier transforms, because the mechanics are
somewhat more complicated. I hope that this chapter will help other uSR researchers to analyse
SR data. I found Ch. 12 in Numerical Recipes[54] very helpful in understanding the relationship
between ringing and apodization by various functions and for understanding the behavior of

Fourier transforms.

3.2 The Rotating Reference Frame and The Art of Packing Data

3.2.1 The RRF Transformation in uSR*

In many NMR and time differential (TD) high transverse field (HTF) y*SR experiments, the

essential information is contained in the precession frequencies of the probe spin and in the shape

*The contents of this section have been adapted from the paper entitled “The Rotating Reference Frame Trans-
formation in uSR”, by T.M. Riseman and J.H. Brewer, which originally appeared in the Proceedings of the 5th
International Conference on Muon Spin Rotation, Relaxation and Resonance. See Ref. [55].

54
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Figure 3.1: The first 4.5 ps of a y™SR time spectrum taken at roughly 0.2 T in the “lab frame”
where the data are recorded and in the rotating reference frame (RRF) to which it has been
transformed numerically for display and fitting. The RRF frequency of 21.2 MHz is chosen to
produce a slow precession signal for visual clarity. Because the original spectrum is real (no
orthogonal detector arrays) the maximum amplitude in each of the complex RRF spectra (real
part: circles; imaginary part: triangles) is actually a factor of two smaller than in the “lab frame”.
The solid line in the RRF spectra is a fit to three frequencies; a single frequency (or even two)
would result in a much poorer fit to the data.

of the depolarization envelope. Typically, the recorded NMR frequency is much lower than the
actual precession frequency due to an analog rotating reference frame (RRF) transformation done
in hardware. This allows economical digital storage of the data using a time bin size larger
than the period of the precession. Since TD-u 1SR consists of recording for many discrete events
the distribution of time intervals from when the y* entered the sample to its decay (u™ —
e + v.i7,) rather than recording continuous changes in magnetization as in NMR, any sort of
RRF transformation before data storage is very difficult and unforgiving. Therefore, the raw data
from TD HTF-u*SR [N(t,), where t, = ndt and dt is the raw bin size] must be stored in a
relatively uneconomical way, with at least four data points (and more than ten if distortions are

to be minimized) per u™* precession period T}, which is given in microseconds by

27 1
T, =1/v= =
W=1v= o = Goi35534B

(3.1)

where B is the average field in Gauss. The maximum field measurable with transverse field TSR

is limited by the timing resolution of the electronics and the apparatus; it is typically = 0.5 ns.
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The analysis of TD HTF-u "SR data can benefit greatly from a discrete RRF transformation
of the stored data followed by coarser time binning (Fig. 3.1). Choosing a RRF near but not equal
to the experimental frequency and rebinning by At = ny, 6t > T), (where n,, is the packing factor)
enables easy visual verification that the chosen theoretical form is qualitatively appropriate for
the data. For example, from the rotating reference frame shown in Fig. 3.1 it is evident that three
frequencies with slow exponential relaxation (as shown by the solid line) will fit the data better
than a single frequency with Gaussian relaxation plus a non-relaxing background; the same is
not evident from the lab frame. Such discrimination can often be achieved by inspecting a fast
Fourier transform (FFT) of the data, but fitting with well-defined x? and undistorted weighting
of different time regions is best done in the time domain. Furthermore, the RRF transformation
allows TD HTF data to be displayed in the same convenient manner as weak TF or ZF data.
Coarser binning means that the corresponding error bars on each data point will be smaller by a

factor ,/n, and that fitting efficiency will improve by a factor of n,,.

In the laboratory reference frame, as the muon spins precess in the sample’s local fields, the
distribution of decay positrons rotates from the direction of the initial muon polarization through
the counters which form a box around the sample (e.g., +X to +Y to —X to —Y back to +X
when a field is applied parallel to Z) This could be generalized to an arbitrary number n of
counters forming a polygon about the sample by substituting em/ (2m) for sines and cosines in

the following derivation.

For HTF, it is a simple matter to numerically extract the asymmetry factor for each raw
histogram (Eq. 2.16):

et/ Tu, (3.2)

Ao(t) = [Nc(t) — B¢

Ne

where C indicates which histogram (C = +X,—X,+Y or —Y for fields B || Z), N¢ is the
normalization factor, B¢ is the background and 7, = 2.197 us is the mean muon lifetime. These

are then combined to form the lab-frame asymmetry,

A~

Ap(t) = 5[Aex () — A x(O)X + 5[A4y (8) - Ay ()Y (3-3)

Q

Ax(t)f( + Ay(t)?
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~ A [Px(t)X + Py(t)Y].

[We assume A, x ~ A_x = Ax and Ayy = A_y = Ay and further that Ax = Ay = A,,
which may introduce distortions—though not as severe as in Sec. 2.5.1—because the calculation
of Ac(t) by Eqg. 3.2 removes the a term but not the 8 term in Eq. 2.16.] If counters +Y and —-Y
are unavailable, the projection Ay (¢) along Y is zero; if only counter +X is present the factor
of % is dropped; etc. Note that this method of calculating a raw asymmetry differs from that in
Eq. 2.18 in that the o parameter is automatically removed. Therefore Ay (t) would be exactly
equal to the expected asymmetry A,[Px ()X + Py (t)Y] if the counters were the same size and
shape (so that g is identical to one—see Sec. 2.5.1) and perfectly aligned (so that ¢, is identical
to zero—see Sec. 2.5.3). For the sake of clarity, we will carry these assumptions through the
remainder of the discussion. This makes the treatment for the experimental data identical with

that for the theory we wish to fit.

Consider a “theoretical” probability distribution of muon frequencies (also known as a fre-

quency lineshape) n,(v) centered about a mean frequency v, = ;—“Bo. In a reference frame
s

rotating at a frequency v, (the rotating reference frame, RRF) near v,, the Fourier transform of

n,(v) is the theoretical complex muon polarization function

PR (3, 1) = PR (3, ) X + PEF (4, 1)V (3.4)
or
T (3, 1) = PR (4, 8) + iPE" (1), 1), (3.5)
with
PE™(y,1) = PR™(t)cost — PP (1) sing)
PEY(y,t) = PR (t)sing + PP (t) cos ) (3.6)

where 1 is a phase which accounts for spin rotation during the muon’s time of flight and

o0

PERF(f) — / no (1) cos[2m (v — vy )t] dv
PRRE(f) = / ny (V) sin2m (v — vy)t] d. (3.7)

—oQ
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The real and imaginary portions of the complex polarization function in the rotating reference
frame are Pg*"(1,t) and Py** (¢, t) in the case of arbitrary phase ¢ and are Pg*"(t) and P;*"(t)
in the case ¥ = 0, which, when fitting data taken in the RRF, may be more convenient to calculate.
This is rigorously valid only if the local field is strictly parallel to the average field (see Sec. 3.3.2
for a discussion of the more general case). The projections of the polarization onto the X and YV
directions are indicated by X and Y in the subscripts. (Note that these equations are equivalent

to Egs. 2.69 and 2.71.)

The relationship between the theoretical lab-frame polarizations [Px (t), Py (t)], the theoretical
real and imaginary RRF polarizations [PgRF(t), P/""(t)] and the theoretical lab-frame RRF
polarizations [PERF(t), P#RF(t)] is expressed by

Px(,t) = PgR(t) cos(2mupt + ) — PRRE(t) sin(2mv,t + )

= P (,1) cos(2murpt) — PF (1, 1) sin(2mv,t)

Py (,t) = PR (t)sin(2rvpt + 1) + PrEE(t) cos(2mvpt + 1)
= PRRP(4, ¢) sin(2mv,t) + PRRF (3, 1) cos(2murt) (3.8)
and conversely
PERF(4h 4) = Px(1h,1) cos(2mupt) + Py (1, t) sin(2mvpt)
PERP(yp.t) = —Px(4,1)sin(2mu,t) + Py (1), 1) cos(2mu,t). (3.9)

where Px(,t) = Px(t) and Py (¢,t) = Py (t) is the polarization observed in the laboratory frame
(from Eq. 3.3). The RRF is only useful as a fitting device when the local field inhomogeneity is
much smaller than the average field (0B < B, and therefore dv < v,), in which case Eq. 3.7 is

approximately correct even if the local fields are not all perfectly parallel.

Thus to transform the experimental asymmetry /Tlab(t) into the RRF we simply substitute
the experimental asymmetry functions Ax (t) and Ay (t) for the theoretical asymmetry functions
Ao Px(%,t) and A, Py (9,1), giving

ARF() = Ax(t) cos(2mu,t) + Ay (t) sin(2mv,t)

AV () = —Ax(t)sin(2ny,t) + Ay (t) cos(2my,t). (3.10)
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Due to tight geometries, some uSR experiments have only two counters (usually +X and —X
or +Y and —17) instead of four, giving only one polarization projection [Px(1,t) or Py (1,1)].
Moreover, this four counter treatment is only valid when the applied field is along the Z direction;
if that is not the case, only two counters may be used in the Fourier transform. One can show

that the theoretical rotating reference frame signal for the two-counter data
P (1) = PRS (4, )X + PFST (4, 1)V (3.11)
can be expressed in terms of Eq. 3.4 for the four-counter signal as

P)I}R2F(¢a t) = + COS2 (PP)I}RF(,(/)a t) - Sin(p COs (ppll;RF(/wa t)

PR (h,t) = —sinpcos P (4, 1) + sin® PP (1, ), (3-12)

where ¢ = 27my,t. Although PE®" and PgR" are slowly varying functions of time, P§%" and
P$i5F oscillate rapidly (through ¢) for reasonable choices of the RRF frequency v, near the mean
frequency v,. In effect, if there is only one polarization projection available (or even just a single
spectrum), we cannot distinguish whether the muon is precessing clockwise or counterclockwise
and hence terms involving both v — v, (desired) and v + v, (not desired) appear when the RRF

transformation is performed.

However, if we rebin the RRF polarization functions using a time bin size equal to At = m/v,
where m is an integer, the spurious high frequency component (the term involving ¢) is avoided

in the final RRF spectrum. This is seen by averaging ¢ over a time period (1/v,), which gives

(cos® P)ryy, = 5+ 3(cos2o)y, = 3
(sin® )1y, = 3 — 3{cos(20))1ym, = % (3.13)
and
(cos psing); ), = %(sin(2<p))1/w =0. (3.14)

Therefore, the theoretical two counter RRF polarization functions simplify to

<P)1§RQF(¢5 t))l/w = %P)I}RF(wa t)

(P (4, )1, = 3P (1) (3.15)
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When the same “RRF transformation” is applied to the experimental asymmetry spectra
fflab(t), a similar averaging of the real and imaginary asymmetries occurs. If there are no counters

along the Y axis (e.g., no +Y or —Y counters), then AY = 0 and we can set A, = A, giving

(AR (8, 0)1/, = 5APE (9, 1)1/, X + (PF(4,0))10, V). (3.16)

If AY #0and AY # 0, we can define A, = J(AY + AY) and get

(ATE (0, 1)1 /0, = A((PRET(1,))1/0, X + (PF(1,1))111, Y). (3.17)

In sufficiently large applied fields, the only qualitative difference between two-counter and four-
counter data in the RRF is that the fitted amplitude of the former will be one half of the latter.

One-counter data looks the same as two-counter data.

If there are two or more frequencies which are well separated, e.g., v,—v1 < v, but v, —vg ~ 1,
then the signal due to frequencies far away from the chosen RRF frequency will likely be “averaged
away” in the rebinning. The case of several well separated frequencies may arise when there are
several muon signals from a strong antiferromagnet in ZF or a sample in a low transverse field
with both muonium and p™ signals (ymy =~ 103,). Depending on the relevance of the multiple
signals, “binning out” some of the signals may or may not be desirable. Simultaneous fits of the

same spectrum in several different RRFs can also be used.

Using a discrete rather than an analog RRF transform complicates the choice of RRF fre-
quency v,. The apparent frequency in the RRF frame (v —v,.) must be appropriate for fitting and

visualization but at the same time it must allow for a convenient bin size (At = m/v, = ny 6t).

3.2.2 RRF in high Fields

In very high fields, the choice of rotating reference frame (RRF) frequency becomes more difficult.
Lecroy 4204 series “clocks” have time bin sizes At = 29 x0.078125 ns for integer q. If, for example,
we start with data stored with 0.3125 ns per bin, we must find integers m and n for a given RRF

frequency v, (in MHz) such that the equation

m n
= X 00003125 = o7 (3.18)
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is satisfied. If no such values of m and n can be found or if smallest RRF bin size allowed m /v,
is too large, then we have made a poor choice of RRF frequency. Moreover, the applied field
should be chosen such that the lineshape in the Fourier transform does not overlap the RRF
frequency if only two opposing counters are being used. For the high temperature superconductor
YBayCu3zO7_gs, an average frequency approximately 2 MHz higher than v, allows for some error
in the setting of the experimental magnet. Appendix shows good choices of RRF frequencies over
all frequencies currently measurable in ySR, assuming the 2 MHz difference and At = 0.3125 ns

per bin.

The choice of RRF becomes less critical with increasing frequencies because the undesired
frequency v + v, becomes large. Even if the number of oscillations per RRF bin (m) is no longer
an integer, the number of oscillations is so large that any partial oscillation can be ignored with
a correspondingly small miscalculation of the RRF asymmetry. With higher fields, rounding
errors during the transformation become very important. For y* data, fields above 1 T produce
high precession frequencies, which yield a huge accumulated phase at late times. Single precision
RRF transformations introduce significant errors so double precision calculations, even for single

precision data, are absolutely necessary.

3.3 The Art of Fourier Transforms

3.3.1 The Fourier Transform in ySR: Bx(7) = By (7) =0

The polarization vector ﬁ(t), which is proportional to the asymmetry, represents the time evolu-
tion of the ensemble muon polarization in the presence of local fields in the sample. In the case

of B I Z, the projection of the polarization onto counters along the X axis is

2 (7 (7 2(7
Px(t) = %/V {g);((f_,;) + BY(_;;EF?Z(_') cos [WB(F)t—l—?p—l-TﬁX]}dF. (3.19)

We can define n,(v)dv as the probability that a muon will precess at the frequency between

v—dv/2 and v+ dv/2 with v = ;—”B, allowing the polarization projection to be written as
T

oo

Px(t) = / 1y (v) cos(2mvt + ) dv (3.20)

—o0
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in the special case when the local fields are parallel to the Z axis [i.e., when Bx(7) = 0 and
By (7) = 0 throughout the sample] and the muon spin is perpendicular to the average field
(¢ = ©/2). [See Eqg. 2.69 in Sec. 2.6.5 for why this treatment is appropriate in the case of
Bx(7) = By (7) = 0 for all 7.] In this case, Px(t) is the Fourier transform of n,(v), to within the

effects of the phase 1. Extending this to Py (), the complex polarization is

I(t) = Px(t)+iPy(t)

_ /OO ny (v) £CTVERD) gy, (3.21)

—00
Since n, () is a probability, it is strictly real and [0 n,(v)dv = 1. If n,(v) is non-zero only for

positive frequencies, then the above integrals may be restricted to positive frequencies.

Since pSR measures the time evolution of the muon polarization from zero time, when the
muon ensemble is fully polarized (since each muon stopping in the sample has the same initial
spin direction), the muon polarization at negative times has no real meaning—reflecting the causal
sequence inherent in implanting polarized muons which depolarize in the inhomogeneous fields
present in the sample. This will be treated here briefly in the context of Fourier transforms by

explicitly including the Heaviside function

1 t>0
Hit)={ 1 t=0 . (3.22)
0 t<0

The complex polarization is then defined for all times (—oo < t < c0) by

me = |[ 7 n) @t a) e

—0o0

= G H®), (3.23)

where we will use G(t) as an abbreviation for [%°_n, (v) et (2mvt+9) gy The Fourier transform of

I1(¢) is the convolution of the transforms of G(¢) and H(t) (this is discussed further in Sec. 3.4):

/ Y i) e 1@Vt gy — o~ it / T g =) v/, (3.24)

—0oQ

where

o) = /°° G(t) e~ 12TVt gy
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- [
= ¢ /_o:on,,(l/')é(y—y')dl/

_ eﬂb nu(v) (3.25)

/oo ’fby(l/,) e’l;(27l'1/’t+’lp) dl/l e—’i271'1/t dt

-0

and

hv) = /_ 0; H(t) e~ 12T gy (3.26)

The extra phase 9. in Eq. 3.24 has been added to correct for the initial phase 1 of the polarization

function.
The Heaviside function can be expressed as
lime " >0
c—0
H) =1 1 120 . (3.27)
0 t<0
which has as its Fourier transform

) 1
hv) = gl—rf(l) 2mv +ic
i(2mv) + ¢
im-————
c—0 (27mv)2 + 2

_ 1 v
= 360 + 5. (3.28)

When the initial phase 1 is equal to the phase correction . used in the Fourier transform,
the convolution can be expressed in terms of its real and imaginary parts

/oo I1(¢) e i2mvite) g = oW /oo g ) h(v =) dV
= 1g9(v) e e 4 /O:o e~ e g(v) ST o dv'

*© 1

1 - ! !
= zn,(v)+1 n,(V') ——dv'. 3.29
) +i [ ) gy (3.29)
The real portion of the Fourier transform is exactly the distribution of muon precession frequen-

cies n,(v) multiplied by one-half to reflect the fact that the polarization II(¢) is only defined for

positive times. The imaginary portion is an odd function of v — v,,.
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For example, an exponential depolarization
T(t) = e A GCTVEHY) gy (3.30)

has a Lorentzian frequency distribution

1 1 A
F =—n,v) == 3.31
r(v) = 5 (v) = 5 Nt 2r— o) (3.31)
as the real portion of the Fourier transform Fr(v) and has
2m(v, —
Fi(v) = w (V) (3.32)

as the imaginary portion of the Fourier transform.

From Eq. 3.23, the area under the real portion of the Fourier transform is equal to the polar-
ization at plus zero time

lim II(¢) = /oo ny(v) dv, (3.33)

t—0t —o0
The area under the imaginary portion Aj is exactly equal to zero, regardless of whether or not

n,(v) is symmetric:

AIE

o 1
/ ny, (v dv' dv

27r 2r(v — 1)

o0 1 1
oo[/oonu 27r(1/—1/ dy+/ (v )27r(u—1/)dy '

0\\\
8

(3.34)

This has a very useful application when the initial phase ¢ of the polarization function is not
known. The initial phase 9 can be calculated from the Fourier transform of the experimental
data with ¢, = 0 using the relation

P =sin" ' (A). (3.35)

If one then sets setting 1, = 9 in Eq. 3.29, the Fourier transform of the experimental data will

produce “phase corrected” real [Qn,,( )} and imaginary [ oo (V) 271'(1/ ) dl/] spectra.
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We are exclusively interested in the distribution of muon precession frequencies n, (v), so it is
important to correctly calculate the phase-corrected real Fourier spectrum Fg(v). The imaginary

spectrum F(v) is of no particular use. The “amplitude” Fourier spectrum Fy(v)

Fa(v) = \/F2(v) + F2(v) (3.36)

is strictly positive but is “contaminated” by the far-reaching “tails” in the F7(r) due to the m
term, so it is not a satisfactory alternative to phase corrected Fr(v). All Fourier transforms used

in this thesis give the phase-corrected real Fourier transform spectra.

Just as in the RRF, the Fourier transform of the complex polarization [involving Px(¢) and
Py (t)] is only valid when B, || Z. Otherwise, one may only take the Fourier transform of the
the polarization projected along a single direction. Using, for example, Px(t) (formed from a
histogram pair) instead of II(¢) (formed from two orthogonal histogram pairs) when n,(v) = 0 for
all v < 0 and n,(v) is centered at v, introduces the following effects: the Fourier amplitudes are
reduced by 1/2 and a mirror-image lineshape is introduced into the Fourier transform centered at
—vp. If the function n,(v) has long “tails” in the imaginary Fourier spectrum, the lineshape and
its mirror-image may overlap significantly. The real Fourier spectrum, which is the important one,
will be unaffected as long as n, (v) is non-zero only for v > 0. These effects reflect the fact that two

opposite counters cannot detect whether the muons are precessing clockwise or counter-clockwise.

If Bx(7) < By(7) and By (F) < By(7) when B, || Z, then the above treatment is ap-
proximately correct and the real portion of the Fourier transform is almost proportional to the

distribution of local fields n,(v).

3.3.2 The Fourier Transform in ySR: General Case

The Fourier transform of the ensemble muon polarization along a certain direction can be quite
informative if it accurately reflects the distribution of local field magnitudes n(B), which is the
case in the previous section where it was assumed that local fields are all parallel. However,
in general, there are components of the local field perpendicular to the average field and the

real portion of the Fourier transform is only approximately proportional to n(B). This section
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discusses the general case of the Fourier transform quantitatively in light of the formulation of

the muon polarization vector given in Sec. 2.6.3.

If the perpendicular field components B, (7) and B, (7) are appreciable then the treatment in
the previous section is not complete. (In this section we will use the Z-j-Z reference frame, which
is defined in part by EO = z, rather than the counter reference frame X-Y-Z in order to emphasize
the properties of various kinds of field distributions.) To summarize the results in Sec. 2.6.3, the

muon-ensemble polarization vector as a function of time (Eq. 2.53) is
P(t) = sin ¢ cos P(t; P, = &) + sin ¢sinp P(t; P, = §) + cos ¢ P(t; P, = 2) (3.37)

where P(t; P, = j) is the time-dependent polarization vector that would be observed if the initial
polarization P, were exactly along the direction 7. The projection of ﬁ(t) onto the C direction is

given by (Eq. 2.51)
Bw).¢ = P)- {/0(3') dB'} e,
+ P(0)- C*{ / n (B') cos [, B dB'}
{/U cos [y, B't] dB’} C
) % €) { [ 7B sin (B dB} (3.38)

where 13(0) = P, is the direction of the polarization at time ¢ = 0. The term

B(t—o0)-C = Bi(t) - € = P(0) - { [o) dB} NG, (3.39)

has no time dependence and therefore only produces amplitude in the Fourier transform at zero

frequency.

The Fourier transform of the vector polarization projected along the C direction is
Fr(v) +iFr(v / H(t) [B(1)-C] e~ @mvitve) gy, (3.40)

As discussed in the previous section, we are not particularly interested in the imaginary portion
of the Fourier transform Fj(v). If the local field were always parallel to the average field, the

real portion of the Fourier transform Fg(r) would be equal to one fourth of the probability
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distribution of muon precession frequencies, which is proportional to the probability distribution
of the magnitude of the local fields:

Fa(v)dv = inu(y) dv = *n(B)dB, (3.41)

where v = - B and the factor of i comes from using the Heaviside function H(t¢) and using only
two opposing counters [i.e. P(t)-C but not P(t)-(C x 2)]. In the general case where B(7) is not
necessarily parallel to BO,

Fr(v)dv = S¢(v) dv, (3.42)

where S¢(v) is approximately equal to iny(u) in the limit of high applied fields when the projec-
tion direction is perpendicular to the average field direction (C-B, = 0). We will refer to Sc(v) as
“the observed lineshape for the polarization projection in the C direction.” We will now discuss

in detail what Sc(v) is and how it differs from 7, (v).

In practice, it is common to “flatten” the asymmetry signal by subtracting any constant terms
before applying the Fourier transform. The “flattened” polarization is simply the oscillatory
portion P (t) of the vector polarization defined in Eq. 2.43. The real portion of the Fourier

transform of the flattened polarization projection P J_(t)‘é is given by

Sc,i(v) = Re/

. . . L
H(t) [P(t) - P(t—o0)] -C 1 2mE+4e) gy
o
[ee] N N .
~ Re / H(t) [PL(1)-C] e 12mvitve) gy, (3.43)
—0oQ
The Fourier transform of the non-oscillatory portion is a delta function at zero frequency

Sey(v) = Re [ O:o H(t) [B(t-00)-C] e i2TE+Ye) gy
— [Plt>0)-C] Re /_ o; H(t) e~ i@Tvt+ipe) g
— [Fltso0)-C] %5(1/ _0). (3.44)
The real Fourier transform of the projection of the complete (or “unflattened”) polarization is
Sc(v) = Sc,.(v) + S¢ (v) (3.45)

In the special case of uniaxial local field distributions (Sec. 2.6.5), where there are no transverse

components [B(7)-# = 0 and B(7) -4 = 0 for all 7 and B, = B,2], which is the case for anisotropic
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superconductors with the applied field along a principal axis, the expression for the polarization

is very simple (Eq. 2.68):
PUM (1) = @sin¢ / n (B) cos [y, Bt+y] dB + jsin ¢ / n (B)sin [y,Bt+vy] dB + Zcos ¢. (3.46)

The lineshape is related to the distribution of local fields by

~ ]_ —
Sef(v) = |P(0)xz] 7w (®) when B(7) || 2 V7

= sing in,,(y), (3.47)

where the normalization |[P(0) x 2| represents the portion of the initial polarization which is
perpendicular to the average field. The phase correction is 9, = 9 for the case of C || P(0),

otherwise it will also include the angle of the counters (in the C' direction) relative to P(0).

In the case of a non-correlated field distribution with z and y components of the local field,
the corrected phase will be the same, but the lineshape S¢r | (v) will not be exactly proportional

to the distribution of local fields n, (). For C || P(0) when P(0) L 2,

A A

S5 (r;C = P(0) L 2)dv = [n (B) — P(0) - U(B) - 15(0)] dB (3.48)

N

using a phase correction 1. = 0. Remember that the muon precession frequency is proportional

to the magnitude of the field: v = J“B. For the case of C = 2 x P(0) when P(0) L 2,

S (1;C =2x P(0) L2)dv=-%-V(B)dB (3.49)

using 9. = 7/2. In both cases, the smaller the transverse field components are relative to the
average field, the closer the real portion of the Fourier transform S¢ | (v) will be to the distribution

of local fields 7, (v).

For arbitrary (i.e. correlated) field distributions, not only will the the lineshape not be exactly
proportional to the distribution of local fields, but the corrected phase 1. used in the Fourier
transform may not be equal to 1, due to correlations in the z, y and z field distributions. The
Z direction in the Z-y-Z reference frame is defined by the average field’s direction. For example,

for a TF experiment, 55-13(15; P, = Z) (see Eq. 2.51) will have an oscillatory component which is
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completely in phase (1. = 0)

~

P)13||(15)

a-P(t
= /{ cos [v.Bt] dB (3.50)
and the real portion of the Fourier transform will simply become
Sy(v) =1 —Ug(B). (3.51)
On the other hand, ¢ ( t; P, = z) will have oscillatory components

A

§-Py (t; P, = & §-P(t; B, = &) — §-By(t; P, = &)

&
I

= — / Usy(B) cos [y, Bt] dB + / V,(B)sin[y,Bt] dB (3.52)

which would be completely out of phase (). = 7/2) if Uy, (B) = 0. Likewise, for a LF experiment,
#-P(t; P, = 3) and 9-P(t; P, = 2) may have oscillatory components (instead of being zero as in

the case of a non-correlated distribution):

&P (t;P,=%) = #Pt; P, =%)— Bt P, =32)
- / 0.(B) cos [, Bt] db + / V,,(B) sin [, Bt] di"
gPL(t;P,=2) = §-P(t;Py=2)—§B(t; P, = 2)

= —/ﬁy(B) cos [y, Bt] db — /V sin [y, Bt] dr. (3.53)

Since this is quite a bit more complicated than the non-correlated case, it is even more dubious
to identify the real portion of the Fourier transform of the projection of the polarization as
“approximately the same as n,(r).” In the general case, the Fourier transform of a polarization
projection contains only part of the information available in 13(t) Therefore, with correlated field
distributions, the straightforward approach is to fit P(t) (the method used in Ch. 5) rather than

the Fourier transforms S¢ | (v) of the different polarization projections (C =X,V and Z)

The lineshape function S¢ | (v) differs from the probability distribution of local field magni-
tudes n,(v) in that, by definition,
o
/ no(v)dv =1 (3.54)

—0o0
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while

/OO [SC,J_(V) + SC,H(V)] dv < i (3.55)

—00

Note that applying the Fourier transform to the muon polarization projection along the C
direction, [ﬁ(t) - 13(t—>oo)} .C, results in a weighted probability density of muon precession fre-
quencies S¢, | (v)dv which is not necessarily proportional to the total probability density of the
local field magnitudes n, (v) dv = n(B) dB. The lineshape S¢, | (v) is what is actually observed in
the flattened Fourier transform of the polarization projected on the positron counter directions
C = X, Y or Z axis. The lineshape may be expected to be proportional to the total probability
density n,(v) [and the zero frequency peak S¢(0) absent] only when all the local fields are along
% || By; they are nearly proportional when the applied field is very large [Bg(7), By (") <« B,(7)].
For Chs. 6 and 7, in which the applied field is much larger than the local field inhomogeneity,
the two are assumed to be proportional. For the cases discussed in Ch. 5, the two may be quite
different and the presence of a large zero frequency peak [S¢(0) > 0] is significant. Note that
the decay positron emission asymmetry factor A, introduces an additional multiplicative factor

in the Fourier transform of uSR data.

Figs. 3.2.a, 3.2.c and 3.2.e show the polarization projections Pc(t) for C = X, Y and Z for
an ensemble of muons in an anisotropic superconductor (see Chs. 4 and 5 for a discussion of the
model used). The X-Y-Z coordinate system is simply rotated from the Z-9-Z system by an angle
0 about the ¢ axis (Eq. 2.31). This is an example of a system which has a non-zero value for
P(t—00), and hence S¢,(0) is also non-zero for one or more of the positron counter directions,
C =X, Y and Z. Note that at long times the average values for the projections of the ensemble
polarization in the X and Z directions [Px (t), Pz (t)] are non-zero while the average value in the
Y direction [Py (t)] is nearly zero. Figs. 3.2.b, 3.2.d and 3.2.f show the real parts of the discrete
Fourier transforms [Sx (;—;‘FB), Sy (;—frB) and Sz (;—iB)] of the polarization projections. The
average field is B = 100 G and the maximum probability amplitude is at about 65 G. The non-
oscillatory portion is seen as a delta function at zero frequency. The polarization projection which
has the largest amplitude is that in the Y direction; correspondingly, its Fourier transform also

has the largest amplitude.
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Figure 3.2: Figs. a, ¢ and e show the polarization projections Py, Py and Pz respectively for
an ensemble of muons in an anisotropic superconductor (chains model) with A=2 = 20 pm~2 and
I' =5 in a field of 100 G applied at an angle § = 30° with respect to ¢ || Z. The initial muon
spin direction is in the X-Z plane (along Z) perpendicular to the average internal field: P(O) = 7.
Figs. b, d and f show the corresponding Fourier transforms (with the muon gyromagnetic ratio
removed) Sx (2£B), Sy (3£B) and Sz (3£B). Notice that at long times the average values for
Px(t) and Pyz(t) are non-zero while Sx (3£B) and Sz (3£ B) have large zero-frequency peaks.
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3.3.3 Basics of a ySR FFT Program

I will not go into the details of the Fast Fourier Transform algorithm (for a complete description,
see Ch. 12 of Ref. [54]). However, it is worthwhile to review a few features of discrete Fourier
transforms as applied to uSR. The experimental SR data is stored discretely, using time binning
(6t) over a finite time range (0 to Tmax). This gives a resolution, or frequency bin size, of
dv = 1/(2Tmax) and a maximum observable frequency of vy,ax = 1/(26t) in the Fourier transform.

Note that as the time bin size increases, the range of frequencies in the transform decreases.

The following is a list of features that all uSR FFT programs should have:

Random background subtraction: Remove the random background obtained either from his-

togram bins at times less than ¢ = 0 or by numerical analysis of the raw time spectrum.

Muon lifetime removal: Remove the muon lifetime from the single counter histograms either
by forming a raw asymmetry with two single counter histograms (Eq. 2.18), or by multiplying
each single counter histogram by et/ Tu after background subtraction (Eq. 3.2) where 7,

is the muon lifetime.

Variable zero padding: Extend the time range of the asymmetry histogram by adding empty
bins. FFT routines require an array size which is some power of two, so the asymmetry
histogram must be padded until the next power of two is reached. If the asymmetry signal
has fully relaxed by the end of the time range chosen, or if appropriate apodization is
used, padding to an additional power of two has the effect (after overall renormalization) of
smoothly interpolating between the Fourier amplitude points (because extending the time
range [0 to Tax] decreases the frequency bin size dv). The transform may look nicer, but
there really is no additional information. In fact, when fitting the Fourier amplitude (with
the error estimated by the standard deviation of the noise in the Fourier transform), the

test for goodness of fit (x?) will increase artificially with increasing zero padding.

Flattening: Remove any constant and linear terms from the asymmetry histogram before trans-

forming. A constant term represents both the inherent non-oscillatory signals (See Egs. 3.43,
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3.44 and 3.45) as well as the “a term” or “baseline shift” calculated for a pair of single counter
histograms. The « term represents mismatched counter sizes, tube efficiencies, etc., (see
Sec. 2.5.1). Removing the constant term reduces the amplitude and width of the spurious
zero frequency peak in the Fourier transform. This is especially important for data taken
in lower fields. Removing the linear term reduces the effects of “non-random” backgrounds

(see Sec. 2.5.2) and helps remove slowly relaxing but non-oscillatory signals.

Phase correction: Correct the real Fr(v) and imaginary F;(v) amplitude spectra Fourier trans-
forms (defined in Sec. 3.3.1) for the initial phase 9 (see Eq. 3.24). This phase represents the
muon’s precession during its time of flight before its arrival at the sample. Phase correction
is essentially the inverse of Eq. 2.76. [Fr(v) and F(v) are related to the amplitude spectrum
Fa by Fo = /F2+ F? and to the power spectrum Fp by Fp = Fa + F?, which are both
independent of 1.] If the phase correction is done properly, then the real Fourier amplitude
will be always positive, except for random noise in regions where the average amplitude is
zero. The imaginary Fourier amplitude will be negative for frequencies less than the peak
frequency and positive for frequencies greater than the peak frequency or vice versa but will
have a total area of zero. If there are several frequencies, the imaginary amplitude may go
through zero more than once. The phase correction is successful if the asymptotic values
of the imaginary amplitude at very small and very large frequencies both go to the same

absolute magnitude. The standard deviation of the noise for Fg(v) is

1 | 2
er = Nd > [Fr(v) — Fr(v)] (3.56)

where the range of N frequencies v; sampled excludes those within =Awv (typically 2 MHz)

of the peak frequency of the lineshape.

3.3.4 Apodization in FFTs

The “art” of the Fourier transform lies primarily in the choice of time window and apodization.
Apodization (also known as data windowing) is done by multiplying the asymmetry spectrum

by a weighting function which varies between one and zero. In this way one can remove early
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or, more commonly, late portions of the asymmetry spectrum; this is useful if these portions are
dominated by distortions or statistical noise or if the polarization has not completely dephased
by the end of the time range. Simply selecting a time window is equivalent to selecting a square

apodization function which is one inside the range and zero outside.

When fitting the asymmetry of a fast relaxing (depolarizing) signal directly, one should de-
crease the bin size and cut down the time window, thereby discarding the irrelevant and noisy
later portion of the spectrum. Likewise, when performing a Fourier transform, one should cut
down the time range either by selecting a smaller time window or by using an apodization function
with average width near the size of the time window used when fitting the asymmetry. As the
FFT is quite efficient, there is no need to speed it up by adjusting the time bin size. In fact,
increasing the bin size reduces the frequency range found by the FFT, which risks inadvertently
missing high frequency signals present in the experiment which have a period smaller than the

new time bin size.

When a signal does not completely relax before the end of the spectrum’s time range, the
Fourier transform will exhibit “ringing.” This is because discrete finite Fourier transforms presup-
pose that the spectrum has periodic boundary conditions. Zero padding the end of the spectrum
will not fix the problem. Since the ringing is caused primarily by the discontinuity at the end
of the time range, it can be greatly reduced by using an apodization function which smoothly
changes from one (at 7' = 0) to zero. This forces the signal to be completely damped out by the

end of the time range, albeit artificially, hence removing the troublesome discontinuity.

The theoretical polarization function shown in Fig. 3.2 has a time bin size of §t = 0.04 us
which allows a maximum observable frequency vm,x = 12.5 MHz (corresponding to a field of
922 G). The time range shown (0 to tmax = 20 us) gives a frequency bin size of v = 0.05 MHz
(corresponding to 3.7 G). The effects of the finite bin size and finite time range are seen primarily
as a small tail on the low side of the lineshape (at ~ 60 G), which theoretically should be infinitely
steep for this example. Since the polarization function is almost completely dephased at the end

of the time range there is almost no ringing in the Fourier transform.

Apodization can also tame statistical noise. The Fourier transform completely ignores error
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bars when calculating the transform, which means that the resulting experimental frequency
spectrum is closest to the “true” frequency spectrum (which one would get if one could accumulate
an infinite number of events) if the input data has the same statistical error for all points. This is

never the case in zSR due to the exponential decay of the muon. For the single counter histogram
N;(t) = Nie=t/Tu[1 + A;(t)] + B;, (3.57)

the statistical error is
, 1
en(t) = \/N;(t) + 1 ~ /N e~ 2t/ (3.58)

Since the asymmetry spectrum has the muon lifetime removed (Eq. 2.18 or Eq. 3.2), the statistical

error increases exponentially in time according to

N] _t/TN - 1
ealt) ~ 7“_‘:% _ /NI et/ (3.59)
e 15

The asymmetry spectrum will reflect this increasing error with increasing scatter, consequently
the Fourier transform will be unduly “noisy” if a long time range is used with no apodization.

This suggests that one should apodize with either
1
Qerr(t) = e_it/T“, (360)
which approximately cancels this behavior, or

NI 1

Qerr(t) = AOES! (3.61)

which cancels it exactly.

If all one needs from an FFT program are the average frequencies and approximate linewidths
of one or more signals, it is not necessary to do anything more sophisticated than what has been
presented so far. However, if the details of the lineshape are important, the choice of apodization
function becomes very important. In particular, it is important to control the noise level in the
Fourier transform. Note that the ratio of the signal to noise in the asymmetry signal at time ¢ is
important and not the ratio of the number of events—which is dominated by the muon lifetime—
to noise (this will be demonstrated in Figs. 3.4 and 3.5). A single function Qerr(t) = e_%t/ Tu will

not be ideal for all depolarization rates or for runs with different total numbers of events.
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The area under the polarization envelope determines the maximum amplitude of the Fourier
lineshape. If the area is reduced by the application of an apodization function, then the amplitude
too will be reduced or—from an alternative viewpoint—the linewidth will be increased. This
is known as “an artificial broadening due to apodization.” For example, consider a Gaussian
polarization function with o 2 1/7, (so that the “signal” has fully decayed in the observable time
range which is several times longer than the muon lifetime 7, and we can use an infinite-range
Fourier transform):

2t2

T(t) = e =27t exp(i2mvot) H (1) (3.62)

where v, = ;—“Bo and H(t) is the Heaviside function (see Sec. 3.3.1.) The polarization envelope
T

12,2
29" has an initial amplitude of 1.0 (at ¢ = 0) and an area under the positive side of the

€
1,242

envelope of \/7/(202). If we now apodize the function using a second Gaussian, Q(t) = e 50t ,

which starts at a value of one and decreases with time, the real portion of the Fourier transform

of II(t)Q(t) becomes

1 0 27)2 (v — v,)?
S(v) = Eny(l/) = m exp [—%] (3.63)

where [n,(v)dv =1 and the factor of 1/2 arises from the use of the Heaviside function. [If the
Fourier transform were performed on a projection of the polarization perpendicular to the average
field direction, an additional factor of 1/2 would appear: S(v) = in,(v). The multiplicative
factor is not a practical hindrance, since normalization of the Fourier transform is not generally
important.] Note that the area under the envelope of II(¢)Q(t) equals the amplitude of 1/2n,,(v)
and vice versa. The effect of the apodization is quite small as long as 02 < o?. In general,
apodization will create a small distortion of the transform from its “true” lineshape. In the case
of ringing, this information is already missing; the transform rings because the polarization is
relaxing more slowly than the data’s finite storage time range. Ringing is only significant when

the time range is about the same size or shorter as the inverse of the relaxation rate, o~ 1.

There is a special class of lineshapes which merits special apodization treatment: those con-
sisting of more than one signal superimposed, where the peak which has the greatest height is
both the sharpest and of the least interest. For this class, one should use apodization functions

which minimize the distortion of the broad peak without regard to the effects on the sharp peak.
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Weak Apodization

Medium Apodization

Strong Apodization

cor = 0.384093
C11 = —0.087577

Cp2 = 0.152442
Cl1p = —0.136176

co3 = 0.045335
co3 = 0.554883

7

co1 = 0.703484 co = 0.983734 ca3 = 0.399782

Table 3.1: Constants for Special Apodization

Norton and Beer[56] surveyed the effects of myriad apodization functions upon the first side lobe
of the function (sint)/t and found the set which caused minimal distortion for a given amount of
apodization. Three functions from this set are “weak”, “medium” and “strong”, which use the

constants in Table 3.1. For weak apodization the function is

Queak (t) = (co1 + c11 + c21) — (c11 + 2¢21) (t/tmax)? + €21 (t/tmax) s (3.64)

where tpy,x is the time range of the spectrum. For medium apodization the function is

Qmedium () = (coz + c12 + c22) — (€12 + 2¢22) (/tmax)” + (c22(t/tmax)*- (3.65)

For strong apodization the function is

Qstrong [t] = (CO3 + co3 + 043) — (2023 + 4043)(t/tmax)2 + (023 + 6043)(t/tmax)4

Fig. 3.3 compares Norton’s and Beer’s apodization functions to Gaussians and exponentials.

At early times, the error bars for uTSR data are small compared to the signal amplitude.
At later times, the error bars increase while the signal amplitude decreases and problems with
statistical noise arise. The exponential apodization function drops off rapidly at early times, so
though it keeps the noise under control, it severely distorts the signal of interest. Of the Norton
and Beer functions (strong, medium or weak), the best choice is the one which keeps the statistical
scatter in the apodized asymmetry to less than about 10% of the signal amplitude. The ideal
apodization function damps out the asymmetry signal just at the end of the time range, thereby

avoiding ringing in the Fourier transform while minimizing the loss of signal.

Norton’s and Beer’s functions are surprisingly close to the versatile Gaussian. This means

that we can apodize with Gaussians with very little additional degradation of the lineshape and
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Figure 3.3: For a time range of 10 us, “weak”, “medium” and “strong” apodization functions (see

Ref. [56]) are shown with solid lines, Gaussians with the same degree of apodization are shown
with dashed lines and exponentials are shown with dotted lines.

thereby benefit from simplified interpretation of fits to the lineshape. In particular, Figs. 3.4
and 3.5 show an example of the effects of various Gaussian apodizations, going from too little
apodization (g; ' =4 and 5 us) to too much (o, ! =1 us). The choice of g, ! = 3 us is the best

shown.

Notice in Fig. 3.4 that there is a point in the asymmetry at about 7.5 us which is visibly out
of line from the rest of the data. This produces the oscillatory noise in the Fourier transform
(with period 0.13 MHz) shown in Fig. 3.5. By apodizing with a Gaussian with o, ! < 3 us the
offending point is virtually eliminated from the asymmetry signal along with the corresponding
oscillation in the Fourier transform. As the apodization decreases from o0~ = 3 us to 2 us to 1 us,
oscillations in the tail of the Fourier transform have longer periods and lower amplitudes; this
reflects the smaller statistical fluctuations in the asymmetry at earlier times. Because apodization

with o, ! < 3 us reduces the amplitude of the asymmetry signal to zero by the end of the time
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Figure 3.4: The experimental spectrum for YBayCu3Og 95 crystals mounted on silver with B | é
in 0.25 T at 10 K in a RRF of 32.0 Mhz with Gaussian apodization o, ! of 1, 2, 3, 4, and 5 ps.



80 CHAPTER 3. MANIPULATION OF uSR DATA

0.20 - W -

O

o

3

a 0.15- | -

c |

<C

L 0.10 - -

LI_ .!

E -

¥ 0.054 —
0.00 -

| | | | |
52 33 34 35 36 &/ 338
Frequency (MHz)

Figure 3.5: The real FFT amplitude for YBayCu3QOg.g95 crystals mounted on silver with B || € in
0.25 T at 10 K with Gaussian apodization aa_1 of 1, 2, 3, 4, and 5 ps. The FFTs were performed
over the first 8 us of data.
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range, the oscillations observed are entirely due to statistical noise and should not be confused

with ringing caused by a time window which ends before the signal has gone to zero.

The point at 7.5 us is not a “bad bin” due to, for example, the electronic’s histogramming
memory mistakenly storing a very high number of events in one bin of the histogram. It is merely
representative of the statistical scatter in the number of events recorded. In particular, it is
expected that 32% of the points in the asymmetry plot will be more than one standard deviation
[ea(t) in Eq. 3.59] from their expected position and that 5% will be more than two standard

deviations away.

Because the statistical error e4(t) in the asymmetry spectra increases exponentially with
time, the signal-to-noise ratio A,Pc(t)/ea(t) decreases approximately exponentially with time.

Consequently the noise in the Fourier transform will be dominated by oscillations with period v,

Up = —, (3.67)
tn

where %, are the times at which there is a data point in the asymmetry which is both more than
one standard deviation away from the expected value and has a very low signal-to-noise ratio. (In
contrast, a signal which has errors independent of time will produce random [or white] noise in
its Fourier transform.) A single counter histogram, which is dominated by the muon lifetime, will
have errors which decrease with longer times. Is the Fourier transform of a single histogram better
in any sense than that of the asymmetry plot? No. The lineshape arising from the distribution of
muon precession frequencies will be superimposed on the Lorentzian centered at zero frequency
representing the muon lifetime. Phase correction cannot remove the effects of the Lorentzian.
The Lorentzian may also be confused with any tail inherent in the lineshape. In addition, it does
nothing to reduce the signal-to-noise ratio for the asymmetry signal’s contribution to the single

counter histogram.
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3.4 Convolution Versus Compounding

3.4.1 Convolution Theorem

In some systems, there may be many sources of local field inhomogeneity which act simultane-
ously everywhere. For instance, in superconductors there are both dipolar fields produced by
the magnetic moments of the nuclei and field variations produced by the presence of a vortex
lattice. To fit the data, one must combine the polarization functions for all sources of local field
inhomogeneity. In the time domain, simple multiplication (called “compounding” herein) is all
that is necessary. In the frequency domain, the corresponding muon frequency distributions must

be convoluted.

Consider 13(75) - C, the projection of the ensemble muon polarization in the €' direction, where
C may be, for instance, X , Y or Z. For the sake of convenience, let us momentarily neglect the
fact that ﬁ(t) is only defined for positive times and that a cosine Fourier transform [to be used
with single signal P (t)- C’] is more appropriate than a complex Fourier transform (to be used with
two signals, the second one of which is P(t) - [B, x C],). This details of the correct treatment are
discussed in great detail in Secs. 3.2.1, 3.3.1 and 3.3.2. The Fourier transform of P (t) = P(t)-C
(from Sec. 3.3.2) is
So(v) = / " [Pw- O Hp e 2™ at (3.68)
—00
and its inverse is

o0

H(t)Po(t) = / Sc(v)eti2mVt gy, (3.69)

—00
If the fields are high enough that the linewidth does not overlap zero frequency, the muons will
always precess in the same direction (clockwise or counter-clockwise) and it would be legitimate

to restrict the integral to positive frequencies.

If one wishes to “smear” the frequency spectrum by some symmetric function Fyym(v), one

If the uSR signal includes negative frequencies, whether due to a field distribution overlapping zero field or
due to the inclusion of a muonium signal (which precesses in the opposite sense from the diamagnetic pt), the
polarization function must include real and imaginary portions with at least two orthogonal counters to record it.
The more general treatment (i.e., integration over all frequencies) is necessary for a proper simultaneous Fourier
transform—I will ignore such complications in this discussion.



3.4. Convolution Versus Compounding 83

can perform a convolution
* !/ !/ !/
(S¢ * Fagm} (v) = / S (V') Faym(v—1') d/. (3.70)
— o0
The convolution theorem[54] states that the Fourier transform of the convolution is given by
Po(t) Gaym(t) = / {Sc * Fyym} (v) e T2V gy, (3.71)
—00

where Ggym(t) is the Fourier transform of Fyym(v). Multiplying the two polarization functions
in Eq. 3.71 is known as “compounding.” This means that convolution of two functions in the
frequency domain corresponds to simple multiplication in the time domain and vice versa. Mul-
tiplication is much faster than convolution so there is a preferred domain, ostensibly the time
domain. However, when the number of data points is reduced by appropriate choice of binning
and RRF frequency in the case of the time domain, or by fitting in a restricted range of frequen-
cies in the frequency domain, the preferred domain depends on the particulars of the problem
and the quality of software available. Note that the function which results from a convolution
will always have a wider lineshape than either of the original functions. We will assume that a
single symmetric function Gsym(t) in the time domain or, alternatively, Fiym(v) in the frequency

domain, will be adequate for use with all polarization projections.

Consider the symmetric frequency probability distribution Fyym(r) which has the property

that the average frequency is zero and Fyym(v) = Fyym(—v). The particular function

1.2 2
Faym(v) = %e_iy /o* (3.72)

which has as its Fourier transform Ggym(t) = e_%OQtZ, will be of practical use in this thesis in
describing effects such as nuclear dipolar moments and disorder in the flux line lattice. When
convoluting lineshapes, it is sometimes useful to ignore the zero-frequency peak in S(v) due to
the non-oscillatory component C -ﬁ(t—)oo). In the time domain this corresponds to compounding
the polarization signal relative to the non-oscillatory portion of Po(t) (see Eq. 2.77)—that is,

separating out the non-oscillatory portion of Px(t) and then compounding only the oscillatory

portion with Ggym (2):

C-PO™P (1) = Po(t—00) + [Po(t) — Po(t—00)] Geym(t)- (3.73)
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The alternative is to compound the entire polarization function
C.peomp whole () — Pc(t)Gsym (1), (3.74)
in which case, the “non-oscillatory” portion

B " 1) = Po(t—00) Gaym 1) (3.75)

is no longer independent of time and the compounded polarization function as a whole must have
an asymptotic value of zero. Depending on the physical system being described, either one of
these two approaches may be more appropriate. A preference for the first compounding approach

(Eq. 3.73) within the context of this thesis is justified in Sec. 4.8.

Suppose that S¢(v) is a lineshape which has non-zero values only for v > 0 with its lowest
significant frequency component many times larger than o/(27). From Eq. 2.76, the projection
along C of the compounded polarization vector ﬁcomp(t) with phase 1 can be expressed in terms of
the polarization functions ﬁll (t; P, = &) and 13| \(; P, = {)) if the initial polarization is perpendicular

to the average field (¢ = 7/2):

+C - Bt Py = §) + Po(t:; Py = )] sing (3.76)

From Eq. 2.77, the compound function P5™P(t) for Po(t) and the symmetric function Ggym (t)

can be expressed relative to the non-oscillatory portion Pc(t—00) as

P () = C-P(t;Py=%)cosp+ C -

C, d=1/2 | (t; Po = §) sinep

+ Goym(t) C - {Pu(t; Py = @) cosyp + PL(t; Py = §) singp} . (3.77)

Fig. 3.6.a shows the polarization projection Px(¢) for an ensemble of muons in an anisotropic
superconductor. Fig. 3.6.b shows the Fourier transform Sx(B) with the muon gyromagnetic ratio

removed and with phase correction. In Fig. 3.6.c, Px(t) is compounded with a second function,

Giym(t) = o3 (ndBt)? _ ,—3(270,8)* _ —5(at)’ (3.78)

where g = 11 G, 0 = 0.937 ps~! and ;—“ = 0.01355342 MHz/G, relative to the non-oscillatory
s

portion of the signal. The Fourier transform of this compounded signal is shown in Fig. 3.6.d;
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Figure 3.6: Fig. a shows the polarization projection Px(¢) and Fig. b shows the corresponding
Fourier transform Sx(B) for an ensemble of muons in an anisotropic superconductor (chains
model) with A2 = 20 ygm™2 and I" = 5 in a field of 100 G applied at an angle § = 30° with
respect to ¢ || Z. The initial muon spin direction is in the X-Z plane (along #) perpendicular to
the average internal field: ]5(0) = 2. Figs. c and d show the same pair with Gaussian smearing of
the oscillatory portion only, while Figs. e and f show them with smearing of both the oscillatory
and non-oscillatory signals.
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it is the convolution of the superconductor lineshape excluding the zero frequency peak with the
function Fyym(B) = /7/(208) e_%(B /98)* [The transform could have been shown in terms of
frequency using Fyym(v) = /7/(26,) e_%(y/ 8)? by changing the values and units displayed on
the internal field axis.] Fig. 3.6.e shows the same compounding relative to zero and Fig. 3.6.f

shows the same convolution including the zero-frequency peak.

Compounding relative to the non-oscillatory signal is legitimate when the rms deviation 6bsym

of the local field produced by the symmetric frequency distribution,

o /o0 VAo (v) dv

Obsym = — , 3.79
Y T ffooo Foym(v) dv ( )
is much smaller than both the average field B, of the asymmetric distribution,
B, — Q_Wffgf vn, (V) dl/’ (3.80)
Yu f—oo nV(V) dv
and the rms deviation db, of the local field of the asymmetric frequency distribution
) [ oo — B )2 L(v)d
by — 27 | ool — px Bo)mu(v)dv (3.81)
’YN f—oo nV(V)dU

Remember that the component frequency distributions Sx (v), Sy (v) and Sz(v) describe the
probabilities of observing a muon precession frequency v in the counters along the X , Y oor Z
axis; in general, they are not proportional to the probability n,(v) of there being a local field
magnitude B which produces a muon precession frequency of v = ;—;B . See Secs. 2.6.4, 2.6.5 and

3.3.2 for a detailed discussion of when they are proportional to n,(v) or nearly so.

To reduce the cost of convoluting two functions, one can transform them into the time domain,
multiply and transform the result back into the frequency domain. To avoid “wrap around
pollution” from the periodic boundary conditions assumed by the Fourier transform, one should
zero pad each of the original functions to at least the sum of their number of bins beforehand (see
Ref. [54, Sec. 12.4]). If the numbers of bins for the two functions are not comparable, it may be

cheaper to convolute directly.



Chapter 4

Anisotropic London Theory

4.1 Treatment of Anisotropy

The copper-oxide based high temperature superconductors have a layered structure, with planes of
copper and oxygen separated by other atoms. (See Ch. 4 in Ref. [57] for an overview of the chemical
structure of copper-oxide based high temperature superconductors.) The superconducting carriers
move easily within a copper-oxygen plane but they have difficulty moving from one plane to the

next. This accounts for the highly anisotropic behavior of the high-T, superconductors.

If the separation of superconducting layers (e.g., the copper oxygen planes in high 7. su-
perconductors) is smaller than the coherence length £, of the Cooper pairs in that direction,
the superconductor can treated as an anisotropic 3-dimensional superconductor. The Ginzburg-
Landau (GL) formalism remains similar to that described in Sec. 1.1 but with the electron mass
replaced by a mass tensor describing the ‘degree of difficulty’ with which the superconducting
carriers move in different directions within the superconductor. When one uses a mass tensor,
both the magnetic penetration depth and the coherence length become tensors as well. If the
inter-layer separation is larger than the coherence length in the ¢ direction, the superconductor is
more accurately described as a series of weakly coupled 2-dimensional superconducting layers. A
generalization of the GL formalism to this situation was obtained by Lawrence and Doniach.[58]
They treated the superconductor as a stack of Josephson-coupled superconducting layers. More
precisely, the use of a mass tensor is valid in a layered superconductor which has an interlayer
spacing of s when the coherence length perpendicular to the layers (£.) exceeds s/+/2.[58, 59] In
pre-high T, studies,[60] NbSe,, which has a layered chemical structure, was shown to act as an

anisotropic 3-D superconductor while TaSs intercalated with aniline acted 3-dimensionally near

87
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T. but showed evidence of 2-D behavior at lower temperatures.

Many of the copper oxide-based high temperature superconductors, such as BiaSraCaCu20g4 5
and T1sBasCaCuyOg, are extremely anisotropic and probably meet the criterion for the applicabil-
ity of the Lawrence-Doniach description for all temperatures below a small range of temperatures
near T,. However, YBay,Cu3zO7_g, which has an anisotropy in the magnetic penetration depth
of approximately 5, is likely to be in the 3-D regime for all or almost all temperatures. The
chemical unit cell height is 11.7 A and the distance between copper-oxide planes on either side
of the yttrium layer is 3.9 A[61] in YBayCu3O7_s. Using an anisotropy of 5 found in Ch. 5 and
€ = 19 A found in Ch. 7, T estimate &, ~ 3.8 A at 10 K which just barely places it in the 3-D
regime for all temperatures. On the other hand, torque measurements of YBay;CuzO7_4[62] sug-
gest that there is a crossover from 3-D to 2-D behavior roughly 10 K below T,.. Lawrence-Doniach
theory for Josephson-coupled layered superconductors, being more complicated than anisotropic
London theory, has only been developed for fields applied along one of the crystallographic axes
of the sample; in the absence of a complete theory and with uncertainty in the temperature at
which it would come into effect, this thesis assumes that the 3-D effective mass tensor applies for

YBa.QCu?,Os_gg,.

4.2 Derivation of the Anisotropic London Model

In this section, I present a derivation published by V.G. Kogan[63] for a uniaxial anisotropic

superconductor, with a few of the omitted steps filled in.

In the London approximation, the total energy of an anisotropic superconductor * is given by
87TFE = / [B2 + /\Qmij(V x B);(V x B)]] dr, (4.1)
where A is the average London penetration depth

| Mc?
A= 4mnge?’ “2)

*Eq. 4.1 can be derived from the Ginzburg-Landau equations by assuming that the magnitude of the order
parameter is constant but the phase depends on position. Although Ginzburg-Landau theory is valid only near T,
the London approximation is valid over a much wider range of temperatures and fields.
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M is the average mass of the charge carrier, with its anisotropy given by the normalized effective

mass tensor of the carriers, m;;:

Mgy Mgy Mgy

M;; = Mm;; = M May My Myy | where T'r(m;;) =1 (4.3)
Mgy Myy Myy

and M;; is the carrier mass tensor itself. In the crystal frame of the superconductor d-g-é, the

mass tensor is given by

m1 0 0
mig = 0 my 0 | (4-4)
0 0 ms3

Our model uses a layered superconductor in which the ¢ and b crystal directions are equivalent
(m1 = me) and the ¢ axis is the hard direction (mg > m1). The ratio of the magnetic penetration

depths for the principal axes is

>\c ms
r=—=,/— 4.5
Aab mi ( )

Let us assume that the average field B, is along the 2 axis, which makes an angle 6 with the
¢ axis (see Fig. 4.1). Since we are considering a uniaxial superconductor, we can take the § axis

as fixed relative to one of the crystal axes (13) Therefore, the rotation matrix is

cosf 0 sinf
RO=| o 1 o0 | (4.6)

—sinf 0 cosf

The rotated mass tensor is

mij(0) = R~ mi;(0) R (4.7)
or, more explicitly,

mycos?0 +m3sin?0 0 (my —mg3)sinfcosf
mij(e) = 0 my 0 . (4.8)

(my —m3)sinf@cos® 0 m3cos?0 + mysin?0
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Figure 4.1: Coordinate and crystal axes; @ is the rotation of the crystal’s hard axis ¢ with respect
to the coordinate axis 2.

Minimizing the energy gives the London equations

823' ¢ Z 5(F_F ) H l(Ta 0) < B, < H, 2(T7 9)
Bi — X ) my €1si €kt ﬁ = o ’ ‘ ° ‘ , (4.9)
jklst LsOTt 0 Bo < Hcl (T, 0)

where the penetration depth is defined by /\12]- = )\Qmij and the sum over v is restricted to a unit
area (1 pum? if ¢, is in units of Gum?) to ensure normalization in this choice of units. The constant
¢, is the flux quantum for a Cooper pair of two carriers each with charge ¢ = e

c(27h)
2q

bo = = 20.6785 Gum?, (4.10)

where % is Planck’s constant. In a type II superconductor above H,.(T), the magnetic field
penetrates partially inside the superconductor by forming vortices (or flux lines). These vortices
correspond to locations in the material where the magnitude of the order parameter vanishes but
the phase varies by 27 along a closed contour encircling the vortex. As a result, the “charge”
carried by each singularity in the order parameter is quantized, i.e., each vortex carries exactly
one flux quantum, ¢,. Because the London approximation averages over the spatial variations

of the magnitude of the order parameter, the size of the vortex core is effectively zero, i.e., the
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vortex is reduced to a point singularity described by the delta function on the right hand side
of Eq. 4.9. The energy of the superconductor is minimized when the vortices form a regular

triangular lattice.[64]

Whether the superconductor is type I (no singularities) or type II (with singularities when

H.(T) < B, < He5(T)) depends upon its lowest energy state — more specifically, whether

<1/v/2 typel

k= AE / (4.11)
>1/v/2 typeIL

The symbol ¢ stands for the coherence length, which is the typical length scale over which the

superconducting Cooper pairs of electrons or holes are correlated. The high temperature super-

conductor YBagCusO7_s5 has k of the order of 55[5] to 77,[6] which is well within the type II

regime.

Ultimately, we would like to determine the distribution of the magnetic field in type II su-
perconductors (isotropic and anisotropic) from the spectral distribution of the muon precession
frequencies and thus determine the magnetic penetration depth A. With the goal of calculating the
field everywhere in the superconductor (neglecting edge effects), we apply the Fourier transform
to the London equation for a superconductor in the type II state (Eq. 4.9). The Fourier transform
is continuous, but the result will be a discrete summation due to the lattice of singularities on the

right hand side of Eq. 4.9. Assuming that the flux lines are along the Z direction,

[ B, 0’°B 0B
N . 2 T y | z
B,(7) = X _mz/z < oy Bxay) Mgy, <—8y2 )]

[ 6B ’B, 0°B
o - 2 z Yy T
By(™) = A -ma:z (8:{:8@/) e ( o0z? 8x8y>]

I 2 2 2 2
B,(F) = X |m (8 Bz) + Mgy (@> + Mg, (—8 B + 0" By

0x? oy?  0xz0y
+ ¢o ¥ 6(F—7). (4.12)

N————
| I

Using V - B(7) = 0 and assuming that 9B, (7)/dz = 0, this can be rewritten as

2

2
ey = 3 [omsne (22

0z dy
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S 0B, 0B, o o
Bz(‘l") = AQ [ml ( a_’I;2 > + Mgy (B—y2> +m$ZAB$ + ¢OZ(5(T‘—’I"U), (413)

where A = 02 /0x? + 6% /0y>.

Let us suppose that there is a regular flux line lattice with the »*" vortex at position 7, in
the 2-7 plane. In the course of taking the Fourier transform we remove the term eil; Ty by only
allowing k € {K}, where {K} is the set of reciprocal lattice vectors for 7,. The number of flux
tubes per unit area in the Z-§ plane is defined as ny. The anisotropic treatment produces the
following Fourier components of the local field (i.e. the spatial Fourier transforms of the three

components in Eq. 4.13),

Bo(K) = nipo(Nmy.K2)/d

Y
By(K) = —nppo(Nma.KoKy)/d
B.(K) = nsho(l+Nm,.K?)/d (4.14)
where
d = (1+ Nmyy K} + N’mge K)(1 4+ X’m..K?) — (A’mg, KK,)® (4.15)
and
K’=K;+K,. (4.16)

Here ny is the areal density of vortex cores. Since each vortex carries a flux quantum ¢, =
20.7 Gum?, the average internal field is B, = ny¢, and B, is equal to the applied field (H,) in

the absence of any flux exclusion. The total local field at a point ¥ = (z,y) is

B(7) = Re Y B(R)e KT (4.17)

where B(K ) = B,(K )i + B,(K )z + B,(K )2.

In the case of an isotropic superconductor, my; = d;; and Eq. 4.14 reduces to

B,(K) = 0
By(K) = 0
B,(R) nPo (4.18)

(1+ A\2K2)’
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If there were only a single, isolated flux line at the origin (7, = 0), there would be no restriction
on k since

ek To — 0 = 1. (4.19)

In this case, all the summations would be replaced with integrals, giving a modified Bessel function

for the local field as an approximate solution

B(7) ~ B(7)? x Ko ({ A\/fn_w} + {A ?:nm} ) . (4.20)

Fig. 4.2 shows a single vortex for # = 90 and 8 = 0. Note that the subscripts of the penetration

depth are defined by the direction of the superconducting current, i.e., the exponential decay of
the magnetic field in the ¢ direction is produced by supercurrents in the # direction (j;,) and
the decay constant is given by the penetration depth A;,. In these two cases, the supercurrents
are only in the z-y plane; when the average field is not along one of the crystalline axes, the

supercurrents are in a plane which is tilted relative to z-y.[65]

Notice that in the isotropic case the local field is parallel to the applied field, while in the
anisotropic case there are transverse components of the local field which can be quite substantial.
Physically this is because the screening currents, discouraged by the poor carrier coupling along

the ¢ axis, tend to flow in the a-b planes rather than always perpendicular to the applied field.

4.3 Choice of Reciprocal Lattice

The tensor behavior of the effective mass tensor also gives rise to the effect that for a single
vortex, the Z component of the local field will be negative at certain positions far from the vortex
core[66, 67] when the applied field is not along one of the crystal’s principal axes. If a second vortex
is added,[67, 68, 69] the two will mutually repel if both are placed along the § axis as they both
have positive values for B, (7). The second one will prefer to situate itself along the # direction
in the position of the maximum negative value of single vortex’s B,(7). This is essentially an
angular dependent attractive force between vortices along certain directions that is not present in

the isotropic case. At very high vortex densities, this attractive effect along Z becomes negligible



94

VN
5
S 04
VN
0 02
X
© 900
O
@_002
(-
O —04
O
N—
X
7N\
5
S 04
P
0 02
X
© 00
O
@_0'2
C
O —04
O
N—
X

CHAPTER 4. ANISOTROPIC LONDON THEORY

I s [
-E o —-F-- - _
- - : :

LB | £, 0m00 = ¢, Jw

FSofl— /= __--- T ... ___ .. = P_ -
o — P =~

9=90 e I oS E s TS >

R B i U SO
o N N S~ -7 7
-2 ~ ~ S EsEEE - -7 - /37

R NN -—-_ - """~ -__--- - . 4
_Y (along ¢ axis) (nm - e

[Tl Ae=00) = A, )

1 1 1 1 1 1
-1.5 -1.0 -0.5 0.0 0.5 1.0
y (along b axis) (um)

I I I I I I

| E* o= i
~ 7 N
—~ 1F 7/ N
2 / \

- é ol B - / , /: : N \ -
o ’ — =
SN e
S2 ¢ (0=0) = ¢, ] \ NF27,

- % 2 -1 0o 1 2 \ T /j -

y (along b axis) (nm) N A 3:0" =N 7/ S
N yy( - ) - ab
n N o _ .
1 1 1 1 1 1
-1.5 -1.0 -0.5 0.0 0.5 1.0

y (along b axis) (um)

Figure 4.2: Magnetic penetration depths are shown in the Z-g plane, for § = 90° (top) and

6 = 0° (bottom). The direction of the local current is indicated by j; and jy,. The case shown
corresponds to a magnetic penetration depth in the a-b plane of A\, = 0.1400 ym and a ratio of

Ae/Aqp = 5.0. The inserts show the approximate size of vortex core, which is an ellipse with axes
given by the coherence length. If kg = Agp/Eqp = 80, then &, = 1.75 nm and &, = 0.305 nm.
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and the flux line lattice geometry becomes constant. However, at lower fields, the energy of flux

line lattice must be minimized in order to calculate the correct lattice geometry 7.

4.3.1 High Field Limit

In this section, I will discuss the vortex geometry in the high field limit, i.e., when the spatial
variation in vortex-vortex attraction/repulsion due to the off-diagonal elements of the effective
mass tensor becomes negligible. It is reasonable to assume that the flux tube lattice will be a
non-equilateral (i.e. isosceles) triangular array. The lowest energy solution has the following set

of anisotropic primitive vectors:[70, 71]

71 = Lg%
1 3
o= Liain, Y3y (4.21)
2 2
The number of flux tubes per unit area is
B 2 1
2 (4.22)

n = = —— —
T %0~ VBLLy
for an average internal magnetic field B,, which equals the applied field H, in the absence of

overall flux exclusion. The distances L, and L, are determined by

2 ¢o

L,L,=—— 4.23
' V3B, (4.23)
and by
L m
= _  [Z2 4.24
giving

I ) ¢o 1/2 Myy 1/4
- = (5m) G)

e (GE) ) @29

If #1, 72 and 73 are a set of primitive vectors for a Bravais lattice, then the reciprocal lattice
vectors ki, ko and k3 are generated by[72]

A~ 7j X Tk
ki:eijk27rA J

- 4.26
T (’/‘j X ’l"k) ( )
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From this, we conclude that the reciprocal lattice’s primitive vectors are

ks = 2mz. (4.27)
An arbitrary reciprocal lattice vector K is
K = nki 4+ mko, (4.28)

where n and m are integers.

4.3.2 YVortex Chains for Low Fields

The attraction of vortices to each other’s minima in B,(@) along the Z axis[65] gives rise to the
formation of “chains”[67, 68, 69] when a low field is applied at an angle to the superconductor’s
principal axes. Since the magnetic field due to each vortex adds vectorially, this effect is reduced
at higher fields where the high density of vortices washes out the variation of B(7) in the #-§
plane. Calculating the correct flux lattice geometry involves minimizing the energy e (per unit

cell of the FLL Fj)

e= 87r1F0 Z {|§(R")|2 + XK x B(K)];mij [K x B'(R")]j} (4.29)
R

as a function of p = r1/r2.[67] The sides of the FLL’s isosceles triangle of three vortices are defined

by

o1 2
" <E, PVIT= (/27 (p/2)2> ' 0

Fig. 3 in Ref. [67] shows the angular dependence of p as a function of angle (0° to 90°) and
applied field for an anisotropy of I' = \./Agp = /m3/m1 = 5. The average field B in the figure is
expressed in the reduced units of ¢,/(27A2), where A = (A2, \.)'/3. Reduced units B of 1.5, 5.0,
10.0, and 50.0 correspond to fields of 86.22, 287.4, 574.8, and 2874.2 G for A\, = 1400 A, T =5
and A = 2394 A.
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4.4 Effect of Vortex Core

London theory can be modified to take into account the finite size of the vortex core by cutting
off the infinite sum over the reciprocal lattice vectors K at values equal to the inverse of the

coherence length (| Kpax| =~ 27/€) which gives[73]
ReZB ) exp(—iK-7) exp {— [ggb(f? x )2 + E2(K - 6)2] } . (4.31)
For straight vortices this can be expressed as
Rez B(K ) exp(—iK-7) exp {— [Kg&ﬁz + Kjfzy] } , (4.32)
where the coherence length is given by

Exz = Eab mzz(g)/m?) = Azz/("’ﬂab\/"'TES) = gcv mzz(g)/mla (433)

and
f;Zy = fab = )\ab/’iab (4.34)

where kg = A\gp/&ap is the Ginzburg-Landau parameter in the a-b plane.

The coherence length in the a-b plane (£4) is a factor of \/ma/m; = I larger than the
coherence length along the ¢ axis (€.) (see Fig. 4.2). The exponential exp {— [Kgfgm + Kﬁ&jy]}
produces a field which smoothly reaches a finite value at the center of the vortex, whereas the

unmodified London model diverges logarithmically. This modified London model is valid for

By, = njo < 0.25 He.[74, 75)

4.5 The Magnetic Field Distribution and the ySR Lineshape

4.5.1 Isotropic Case

A triangular FLL for an isotropic superconductor in low field and its corresponding lineshape are
shown in Fig. 4.3. The minimum field occurs at the point at the center of the triangle formed

by three adjacent vortices. The midpoint between two adjacent vortices is a saddle point in
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Figure 4.3: The insert shows the FLL unit cell for an isotropic superconductor in the modified
London model (Eq. 4.32) with x = 60, A = 0.1318 pm and an average field of 100 G, which
produces an intervortex spacing of L = 0.4889 um. The contour lines are from 65 G to 100 G.
Contours for local fields above 100 G have been left out for clarity. The minimum field (marked
“M”) is at the center of the triangle formed by three adjacent vortices. The maximum field
(marked “V”, 1037 G) is at the center of the vortex. The saddle point (marked “S”) has the
greatest amplitude in the lineshape. The corresponding ySR lineshape is shown in the main
figure.

Probability (Arb. Units)
W
11 1 | l 11 1 | ll 11 ll 11 1 | l 11 1 | l 11 1 |

lllllllllllllllllllllllllllll

@)



4.5. The Magnetic Field Distribution and the ySR Lineshape 99

the local field distribution. Because the London equations are linear, the spatial magnetic field
distributions due to each of the vortices in the flux line lattice (FLL) can be summed. The
probability amplitude for a given field B+ §B in the SR lineshape is directly proportional to the
area within B of that field in the FLL, so the density of the field contours about a given field is
inversely proportional to the amplitude for that field. The minimum and saddle point fields (By
and Bg) are in the region where the contour lines are sparse, so they both have a large amplitude
in the lineshape. The saddle point field has the largest area within B so it appears as a cusp (or
van Hove singularity) in the lineshape.[75] Both the minimum and maximum fields (By and By)
are seen as vertical cut-offs in the lineshape, reflecting the fact that they are present in the FLL
but there is no field beyond. At the minimum field, this cut-off is seen as a “shoulder” since it is in
a high amplitude region. From Eq. 4.20 one can see that the field increases rapidly near a vortex
core hence the contours are close together. This leads to a high field “tail” in the lineshape which
can be easily lost in experimental noise.[76, 77] Even though the rate of field change decreases to
zero at the vortex core, this region is so small for moderate applied fields that the maximum field

has negligible amplitude in the lineshape.

4.5.2 Anisotropic Case

For an anisotropic superconductor with a field applied at an arbitrary angle, the vortices form
isosceles triangles rather than equilateral triangles. The field at the saddle point on the short side
is different from that on the long sides, which leads to two separate cusps in the lineshape (see

Ref. [65] and Figs. 5.2 and 4.4).

Fig. 4.4 shows the total field and the &, § and Z components of the local field in an anisotropic
superconductor (I' = 5, frozen model which assumes Eq. 4.25 rather than Eq. 4.30) with the
applied field at an angles of 60° to the crystal’s ¢ axis. Note that the components B, and B, are
non-zero, in contrast to the isotropic case or the anisotropic case with § = 0° or 90°. Moreover, the
maximum negative value of B, is associated with the vortex cores [ = (z,y,2) = (0,0, 2), etc.]
and the maximum positive value of B, is associated with the region between the Z-axis “chains”

of vortices where there is a relatively low value for the local field’s magnitude B(7). In contrast,
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Figure 4.4: The spatial magnetic field distribution B and the field components B;, By and B,
(where % is parallel to the average field direction Eo) in an anisotropic superconductor with
the applied field at an angle § = 60° to the ¢ axis, in the frozen model. The average field is
100 G, Agp = 0.1754 pym and ' = A /Agp = 5. The & and § axes have been normalized by
L =./L,L, =0.4889 um (see Eq. 4.25) so that the centers of the vortices are at (z,y) = (0,0),
(0.727,0)L, (0.364,1.190)L, (1.091,1.190)L, etc. For B and B,, the contour lines shown have
values between 86.5 G and 100.0 G, differ by 1.5 G and are omitted for local fields above 100 G
for the sake of clarity. For B,, the contours shown vary between —18 G and 14 G, differ by 4 G
and are omitted for values between —108 G (at the vortex core) and —20 G for the sake of clarity.
For By, the contours shown vary between —18 G and 18 G and differ by 4 G. For B, and By, the
signs + and — indicate the regions which have positive and negative values and zero (0) indicates
where the component is zero.
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—

for every point 7 = (z,y, z), the point § = (L; — z,y, z) has the property that By(5) = —By(7).
Therefore, by inspection, for an anisotropic superconductor, two out of three of the correlation

parameters (see Eq. 2.48) are zero:

. o 1/ . R
- — B@] [B()-5] dF = 4.
Usy(B')dB' = - T |#-B(7)] [B(7)-9] di =0 (4.35)
~ 1 ~ ~
(B B’:—/ )-B(7)] [B()-2] dF =0, 4.36
0y,.(B') d V|w®|ykﬁjy<mH (7)-2] di =0 (4.36)
while
7 ! 1 _ 1 A B A ~ -
U (B') dB' = - /| i [¢-B(7)] [B(7)-2] dr # o, (4.37)

where the integrals are restricted to those positions 7 such that the magnitude of the local field

is within +dB’ of a particular value B’. Likewise, the components of the vector (Eq. 2.49) are

N 1 R
4 T(BdB' = 3 - —/ B dr\ +£0 4.38
) {V ORI }7& 43
while
o 1 “
). V(B dB' = - —/ B(7)dFs = 0. 4.39
re y{Vlwmkyk%i() } .

Therefore, by the definition in Sec. 2.6.4, this field distribution is definitely correlated. Because
U, # 0, the non-oscillatory portion of the polarization P’(t—>oo) (Eq. 2.42) will have a component
in the direction of the applied field (2) and will not be exactly parallel to the initial muon

polarization direction, if P(0) is not in the §- plane (see Fig. 5.6 in Sec. 5.3.1).

The London model (Egs. 4.14 and 4.17) has a singularity in the field at the center of the
vortex (Bgore — 00) because it assumes k > 1 and £ = 0. The modified London model (Eq. 4.32)
makes the field finite at the vortex core by introducing the coherence length £. In low (A < L) and
moderate (A > L) fields, this does not change the lineshape significantly because the amplitude at
the maximum field is negligible. Fits to data taken in low and moderate fields all assume x = 60
in this thesis. In high fields (A > L > ¢), the maximum field becomes observable as a cut-off
in the lineshape. The London model must be further modified to take into account the upper

critical field Ho (Eq. 7.7).
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4.6 The Effect of Non s-Wave Pairing on the Lineshape

As discussed in Ch. 1, one goal of this investigation is to determine whether A(7') in YBasCu3Os.95
is consistent with s-wave superconductivity or with another pairing state such as d-wave. A
feature of non s-wave superconductors is that the binding energy for the Cooper pairs [twice
the superconducting gap A(E)] is no longer isotropic, but rather has nodes in momentum space.
Since quasi-particle excitations can only be produced with energy greater than 2A, quasi-particle
excitations due to phonons are more common at low temperatures in superconductors with nodes
in the gaps compared to s-wave superconductors which have isotropic gaps. The formal treatment
in this chapter is based on the premise of anisotropic s-wave superconductivity. The question of

utmost importance is that of the validity of fitting experimental data with results from s-wave

theory if the sample (e.g YBayCu3QOg.95) happens not to be an s-wave superconductor.

It is reasonable to assume for simplicity that YBasCusOg 95 has a single scalar order parameter,
since it shows no signs of split transition peaks, etc., reflective of multiple order parameters such as
in UPt3.[11] A single order parameter is appropriate when the superconductor has orthorhombic
symmetry;[11] in the superconducting state, YBayCugO7_s has an orthorhombic crystallographic
structure, although in the insulating state (6 2 0.65) it is tetragonal. On the basis of the AFM spin
fluctuations, the candidate spin-singlet state d,»_,» has been proposed, in which the excitation
gap vanishes along the positions |k;| = |k,| in momentum space.[23] In this case, it is possible
that the vortex core may be rosette-shaped rather than elliptical,[78] which may in turn affect
the “tail” of the uSR lineshape, in which case the s-wave equation for the local field distribution
(Eq. 4.32 for intermediate fields, Eq. 7.7 for high fields) is not valid. However, calculations of
the local field distribution in the high field range in various d-wave states are not available at
this time, which makes it difficult to assess the size of the error introduced by using only s-wave
predictions of the uSR lineshape. This should not be a problem in low and moderate fields (such
as in Chapters 5 and 6) because the size of the core is negligible and the spatial field distribution

should be nearly identical in both s- and d-wave models.
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4.7 Disorder in the Flux Line Lattice

If the flux line lattice (FLL) deviates from its ideal configuration (a perfect triangular array) due to
dislocations, microscopic disorder, variations in the macroscopic average field, etc., the theoretical
#SR lineshape will lose its sharp features at the minimum, cusp and maximum fields. This
means that the lineshape of the experimental data cannot be adequately fitted by the theoretical

lineshape for the ideal FLL alone.

Brandt[79] determined that SR data taken in Nb can be fit to a theoretical lineshape con-
voluted with a Gaussian distribution of fields and that this convolution is consistent with how
disorder in the FLL due to flux pinning modifies the lineshape from the ideal case.[75] When fitting
#SR data, convolution with a square function works nearly as well as a Gaussian function with
the same second moment. In fact, almost any symmetric convolution function will fit well, while
many asymmetric functions fit poorly. The experimental data can only roughly determine the

relative appropriateness of convolution functions for use with a given ideal theoretical function.

The width of the ideal SR lineshape is roughly proportional to A~2. If the variation of the
magnetic penetration depth within the sample is negligible, we can relate the degree of “smearing”
to the degree of disorder in the FLL. The drawback is that one cannot a priori determine the
cause of the smearing from ySR data alone. On the macroscopic scale, the density of vortices
may vary from the center to the edge of a superconducting crystal due to imperfect flux expulsion
in the presence of pinning. On a smaller scale, vortices may be preferentially pinned at twin
boundaries and other structural defects in the sample, causing an increase of the average local
field at these defects. On a microscopic scale, individual vortices may be pinned multiple times
along their length, in which case the pinning forces may pull them individually out of alignment

relative to the ideal FLL.

Most sources of smearing (e.g., pinning, uneven doping leading to a distribution of penetration
depths and inhomogeneities in the applied magnet field) can be represented by a symmetric
distribution. An exception is the smearing caused by the gradient in the average local field from

the center to the edges of a platelet-shaped superconducting sample due to the interaction of flux
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expulsion and vortex pinning, which according to the Bean critical state model requires a right-
triangular convolution function with the maximum amplitude on the low field side. (Actually, the
Bean model usually is in reference to an external field which is changed while the sample is in the
superconducting state (see Chapter 11 in Ref.[8] and reference within), but it is plausible to extend
it to the case of increasing flux expulsion as the superconductor is cooled in a static applied field.)
Ref. [80] used the Bean model in this way to analyze SR data taken in an unoriented powder
of YBasCuzO7_5 with platelet-shaped crystallites cooled in a static applied field. Since the ideal
unoriented powder lineshape is much more symmetric than the single crystal lineshape,[53, 81] the
experimental data can be fit adequately using the right-triangular smearing alone. This does not
prove that right-triangular smearing is the primary source, since a symmetric smearing function
will fit the data equally well. The rounded cusp in the experimental lineshape for a mosaic of
large oriented crystals with B || é (see Fig. 5.7) forces the use of a symmetric smearing function.
The theoretical lineshape has a skewness similar to that of the right-triangular smearing function
produced by the Bean model, so the resulting convolution alone would not fit the data well. This
suggests that while there could be some macroscopic field inhomogeneity due to flux expulsion,
it cannot be easily distinguished from the ideal lineshape unless the applied field is high enough
that the high field cut-off due to the vortex core is observable (Figs. .11 through .18). The upper
limit to the size of the field inhomogeneity from the flux expulsion interacting with the pinning
may be estimated by the size of the observed average flux expulsion, which is less than the
observed Gaussian smearing in YBaoCu3QOg.95. In fact, given the large size of the crystals and the
mosaic, and hence the small size of the flux expulsion before pinning sets in (as determined from
magnetization measurements), the Bean model does not predict significant smearing, compared
to the observed symmetric smearing presumably due to pinning. In light of this, convoluting the

theoretical lineshape with a Gaussian is quite appropriate.

Brandt (see Ref. [75] and references therein) has calculated the elastic moduli for the flux line
lattice of the isotropic superconductor and the elastic energy of an arbitrarily distorted FLL. If
random pinning produces an approximately Gaussian distribution of distortions in the FLL, the

size of the distortions can be estimated with the following treatment.
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The vortex displacement is given by

So(2) = To(z) — 7 (4.40)

-

B = G+ G (441
5,(2) = / (kT *(75);% (4.42)

-

® = o> / e~k 5 (), (4.43)

Brandt[75] calculated the smearing width by shear and compression in the presence of an approx-

imately Gaussian distribution of FLL distortions as

dk
o2~ B? /B.Z. (Caky — §ykw)2ﬁ (shear) (4.44)
o o [ (Gaka +Gyhy)? dE .
o, = BO A.Z. W@ (Compressmn) (445)

where k2 = [1 — B,/H¢2(T)]/X?. The integrals are over the first Brillouin zone (B.Z.), which
includes k from 0 to 27/L, where L is the intervortex spacing. Eq. 4.44 would become a proper

equality with the addition of a constant of order 1.[75]

I will make the simplifying assumption that the vortices are stiff, i.e., §,(z) = §,. By substi-
tuting Eq. 4.43 into Eq. 4.45 and noting that the integrals of the exponentials are Dirac delta func-
tions, we see that the degree of lineshape smearing in the case of random compression (Eq. 4.45)

can be rewritten as
k2 +k;
(14 k2/E3)%

(4.46)

k€Kpz
where (s2)1/2 is the root mean square of the vortices’ displacements from their ideal positions in
the FLL. The reciprocal lattice vectors of the ideal FLL which are within the first Brillouin zone

are indicated by K Bz. Likewise, the degree of lineshape smearing in the case of random shear

(Eq. 4.44) can be rewritten as

o2 :B§<T > E24E. (4.47)
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Brandt[75] estimates that the smearing width of the ySR lineshape is
o1 ~ (02 4 02)'/? (4.48)

at the minimum and cusp fields and is

09 & O¢ (449)

at the maximum field (the lineshape’s cutoff). I have calculated that for the fields (100 G, 0.25 T
and 1.9-6.5 T) and magnetic penetration depths present in my experiments, the smearing width
due to random shear is much smaller than that due to random compression. Therefore, I use only
the expression for random compression (Eq. 4.46) to estimate the degree of disorder present in

the sample:

D=

oe K24k2 )
<82)1/2 ~ B—o\/ﬁ( Z W) . (450)

k€Kpz
Note that because each muon is a local probe which responds only to the local magnetic field
where it stops in the sample, uSR cannot distinguish between short range disorder and long range
disorder in the FLL. In contrast, neutron scattering off the FLL[82] and magnetic decoration

experiments[32] can determine the degree to which the FLL maintains its long range hexagonal

order in the presence of pinning.

For an anisotropic superconductor, I estimate <32>1/ ? by using an effective penetration depth
Aeff = ;\(mmmyy)l/ 4 and vortex separation L = (LmLyy)l/ 2 in the above isotropic equations. This
should be accurate in high fields where the inter-vortex attraction along the % axis is negligible
(sec Sec. 4.3.2). In low fields, there is currently no expression in the literature for <32>1/ ? 50 this

simple-minded approximation will have to suffice.

4.8 Discussion of Non-oscillatory Amplitude

When the non-oscillatory signal is appreciable, we must determine the physical cause of both
the “smearing” and the polarization function for the ideal FLL. Can we assume that the non-
oscillatory portion of the theoretical polarization is unaffected by the smearing function? Regard-

less, we must keep track of the non-oscillatory portion if we wish to fit in the time domain. The
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non-oscillatory portion of the polarization P(t—o0c) will be parallel to the initial muon polarization

direction [P(0)] if the local field distribution is symmetric (see Sec. 2.6.4).

For the flux line lattice in an anisotropic superconductor, the non-oscillatory signal is entirely
due to components of the local field perpendicular to the average field which arise from the tensor
nature of the anisotropic magnetic penetration depth when the applied field is not along one of
the principal axes of the superconductor (see Sec. 4.2). Because the local field distribution is
not symmetric (see Sec. 2.6.4), P(t—00) is not parallel to P(0), unless the angle 6 between the

average field and the crystal’s ¢ axis is 0° or 90°.

Disorder in the flux line lattice (FLL) will smear the lineshape.[75, 74] In the case of an
isotropic superconductor or an anisotropic superconductor with the applied field along a principal
axis, i.e., 0° or 90°, the local fields vary in magnitude as a function of position in the FLL but
are all parallel to the average field direction (2). Assuming that the vortices are stiff (i.e., each
vortex is parallel to Z throughout its entire length), disorder in the FLL (in the Z-§ plane) will
cause variations in the local average field but the local fields will still be aligned with 2. As there
are no components of the field perpendicular to the applied field, there will be no non-oscillatory
signal if the initial muon polarization is perpendicular to the average field [P(t—o0; P, = &) = 0

and P(t—o0; P, = §) = 0).

An anisotropic superconductor with an applied field not along one of the principal axes of the
crystal has local fields with components perpendicular to the average field direction. An increase
in the density of vortices due to an increased field reduces these perpendicular components as the
vortices increasingly overlap and the perpendicular components cancel out. Even in a moderate
field of 720 G with the applied field at an angle of # = 70° with respect to the hard axis (&),
Aap = 1400 A and X, = 7000 A, the amplitude of the non-oscillatory signal P(t—oc) has dropped
to approximately 6 x 1078 times that of the oscillatory signal P, (t=0). Only at fields comparable

to the lower critical field H 1 (T') = R{é;(—T) will the non-oscillatory signal be significant.

The perpendicular field components, which are significant in low fields, will be reduced where

the FLL is compressed and increased where it is stretched out. Still, the average perpendicular
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field and the resulting non-oscillatory asymmetry 13” (t—00) should be about the same for a mildly
disordered FLL as for a perfect FLL. It is reasonable to compound the polarization function
representing the FLL [P (t)] with that representing the disorder [Gsym(t)] relative to the non-
oscillatory amplitude (Eq. 3.77). In the frequency domain, this is like convoluting the oscillatory
signals (centered about v, = %BO) while ignoring the non-oscillatory signal (a delta function at
zero frequency). Note that flattening in the Fourier transform (see Sec. 3.3.3) removes both the
non-oscillatory signal and the effects of mismatched counters (), so one cannot tell a priori what

is happening to the non-oscillatory signal.

If the smearing function is chosen to represent nuclear dipole fields, which are randomly ori-
ented, the effects are different.” For an isotropic superconductor, this introduces components of
the local field which are perpendicular to the applied field, some of which cause a non-oscillatory
signal. If the size of nuclear fields are small compared to average field, the non-oscillatory signal
will be small. One generally ignores the small non-oscillatory portion introduced in TF experi-

ments; in this case, Eqs. 2.77 and 3.77 are only approximate.

For an anisotropic superconductor with its own perpendicular fields, the dipolar fields may
change the size of the non-oscillatory signal. If the dipolar fields are small compared to both the
total field and the perpendicular components, then the change in the non-oscillatory signal will
be negligible and one can compound the two polarization functions relative to the non-oscillatory

amplitude.

Because dipolar fields are generally much smaller than the fields produced by the superconduc-
tor in YBayCugO7_4, we can be confident in the approximation that magnetic field distributions
from superconductivity and nuclear dipole fields can be reasonably modeled by the convolution of
the oscillatory signals in the frequency domain or by compounding of the polarization functions
for the FLL [P*°] and the dipolar fields (PDP = e_%02t2> relative to the non-oscillatory signal
in the time domain. Since disorder in the flux lattice can be modelled in the same way, the Gaus-

sian convolution in practice represents both the FLL disorder and the dipolar fields. Moreover,

I presume that the finite superconducting currents prevent the nuclear dipole fields from being screened out
completely on a microscopic or nearest-neighbors level.
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since the experimental uSR lineshapes were produced by calculating the real Fourier transform
of the experimental asymmetry signal using Gaussian apodization to control statistical noise (see
Sec. 3.3.4), the Gaussian convolution also includes the degree of apodization in those cases where

the lineshape was fitted rather than the asymmetry.

It must be noted that this treatment is predicated on the assumption that each muon precesses
in a static magnetic field arising from the somewhat disordered FLL and nuclear dipolar fields.
If the field distribution changes (e.g., if the FLL moves due to the Lorentz force because an
electric field is applied) or if the muons move within the sample, the observed lineshape will
be qualitatively different—in particular, it will be narrower. Fortunately, muons, which form
hydrogen-like bonds with oxygen in copper-oxide based high temperature superconductors,[34,

35, 36, 37, 38] show no evidence of diffusing in YBayCuzO7_s below 150 K.[39]

4.9 The Demagnetizing Factor

For a magnetic material, the internal field Bj,s can be expressed in terms of the applied field Hey

and the magnetization M, assuming uniform M and all vectors parallel:
Bint = Hexy +47(1 — N)M (4.51)

where N is the demagnetization factor, due to the shape of the sample. The magnetization M
will be uniform throughout the sample if it has the shape of an an ellipsoid. The muon precesses

in the internal field Bjn¢ with frequency v,

v=28p (4.52)
T

Assuming no sources of paramagnetism or diamagnetism exist in the sample other than that
produced by the superconducting state, the internal field in the sample is equal to the applied
field Hegyt = Bint at T > T,.. When the sample is cooled below T, the superconductor will
expel magnetic flux, which means that the superconductor has become diamagnetic; that is, the

magnetization M will have a negative value. This results in a lower muon precession frequency
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below T,. With 100% flux expulsion (Bin; = 0), the magnetization is given by

1
4da M = —mHext. (4.53)
and the demagnetization factor is
Hext
N=1 < 1. 4.54
+ 47 M ( )

For an infinitely long cylinder, the demagnetization factor N is zero when the field is applied
axially. For an infinitely large slab, N is one when the field is applied normal to the surface, which
means that the internal field is always to equal to the applied field (Hext = Bint)- For a very flat

oblate spheroid (an ellipsoid with semi-axes a, b, ¢ with ¢ = b and m = a/c > 1),[83] N is

™ 2
Ny=1——+ — 4.55
[ om T2 (4.55)
when the field is applied in the ¢ direction and
T 4
N ~—(1——]). 4.56
L% am ( 7rm> ( )

when the is field is applied perpendicular to the é direction. YBagCu3Qg.95 grows in platelet-
shaped crystals, so the expressions for the oblate spheroid should approximate the demagnetizing

factors quite well.

When the superconductor has no vortex pinning, it responds reversibly to the applied field,

—Hexy when Hey < Hy
M(Hext) ~ 1 (4.57)
_ﬁ(HCZ — Heyt) when He < Heyxy < Heo,

where kK = A/ is the Ginzburg-Landau parameter. However, vortex pinning, which prevents
flux from being expelled as the superconductor is cooled below the pinning temperature Ti;; <
T, occurs in experimental situations. The total flux expulsion at low temperature is reduced
compared to that in the absence of pinning, 47(1 — N)M[H(Tiy)] < 47(1 — N)M. Note that
if K, H.y and Hgo are anisotropic, the magnetization will also be anisotropic. For YBasCusOg.95
the magnetization M is smallest when the applied field is in the a-b direction (6@ = 90°). For

Hey > H.1(0), the ratio of the magnetizations will be

M) n_ (A_) _ (4.58)
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In platelet-shaped samples, the term (1 — N) acts in the opposite way (with a ratio of =~ 2m/7),
with the result that flux expulsion should show relatively little angular dependence. This is
experimentally important in Ch. 5, where angular dependence of the lineshape is investigated and

the internal field Bjy; is difficult to determine.

Two samples of the same material but with different ratios of the semi-axes mi and mo will
have different demagnetization factors N1 and N» and therefore will have different internal fields

for the same applied field,
— Bint,l - Hext — Bint,2 - Hext
47T(]_—N1) 47T(]_—N2) '

(4.59)

Therefore, one can estimate the flux expulsion 47(1 — N)M for a sample too large to fit in the
magnetometer (like the mosaics used in the puSR experiments) by scaling the size of the flux

expulsion from a smaller sample as determined from magnetization measurements.

Because of pinning, the amount of flux expulsion cannot be calculated so it must be measured.
Having said that, using m = 75 I estimate the demagnetization factor N at 0.98 for a 15 mm
diameter mosaic with crystal thickness ranges between 100 gm and 300 pm when Hey || é. For

an 8 mm diameter mosaic, using m = 40 I estimate V|| at 0.96.

Magnetization measurements were made by Ruixing Liang on a single crystal of YBaoCusOg.95
from the mosaic used in the SR measurements reported on in this thesis. The crystal was 1.68 mm
by 1.80 mm square with a thickness of 0.12 mm, with a triangular corner of size 0.75 mm by
0.65 mm missing. It had a weight of 2.04 4-0.02 mg and a theoretical density of 6.366 g/cm®. The
demagnetization factor V| was measured to be 0.8769+£0.0015 by zero field cooling the crystal to
5 K and applying fields of 5-50 G parallel to the ¢ axis, assuming that the flux pinning provides
100% shielding (Eq. 4.53). Estimating N} from the dimensions of the crystal results in a similar
value. The low temperature magnetization was —0.68 emu/cm3? in 100 G, —2.5 emu/cm3 in 0.3
T, —7.5 emu/cm?® in 1.9 T and —21 emu/cm?® in 4.1 T. The flux expulsion should be —0.19 G in
Heyi = 100 G and —0.65 G in Hoyy = 0.25 T from the 15 mm diameter mosaic and —3.6 G in

Heyt =19 T and —10 G in Heyy = 4.1 T from the 8 mm diameter mosaic.



Chapter 5

Anisotropy of \(0) as Measured in Low Fields

5.1 Introduction and Motivation

This chapter describes measurements of the angular dependence of the magnetic penetration
depth A taken with an applied field of 100 G. The first goal was to simply observe the degree
of anisotropy in A using a method which is more consistent than that used in previous uSR
experiments.[84, 28] The second and more ambitious goal was to observe features in the data
(either in the frequency domain or in the time domain) which are indicative of the geometry of
the flux line lattice (FLL) in low fields (see Sec. 4.3.2). While the first goal was easily achieved,

the second proved more elusive.

Luke Daemen of Los Alamos National Lab provided the theoretical calculations of the field

distributions used in this chapter to make the corresponding magnetic polarization functions.

In the experiment described in this chapter, the sample used was a 1.5 cm diameter mosaic of
YBasCusOg 95 crystals mounted on a silver disk, with the ¢ axis normal to the plane of the disk.

See Sec. 1.7 for a more detailed description.

5.2 Apparatus

This experiment was done using the M15 beamline at TRIUMF. The muon spin rotator was used
to select a spin direction from 165° to 90° relative to the muon momentum-—muons are produced
with spins antiparallel to their momentum. The Omni Prime pSR spectrometer (see Fig. 2.2) was
used to apply a field of 100 G orthogonal to the spin direction in the plane of rotation. See Fig. 5.1

for a schematic. Omni Prime was outfitted with positron detection counters forming a six-sided

112
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Figure 5.1: Schematic of side view of spin rotator (with orthogonal electric and magnetic fields)
and experimental magnets (shown as two sets of Helmholtz coils). The muon enters from the
right and stops in the sample at the center of the Helmholtz coils (left). The arrow marked
Py, indicates the muon momentum direction. The large arrows are the muon spin direction at
different locations. The thin arrows are magnetic fields produced by the vertical Helmholtz coils
(H,) and the horizontal Helmholtz coils (H,) and the total applied field (H).

box about the sample location, as pictured in Fig. 2.2. (For most experiments, only a subset
of these counters would be used.) The RIGHT and LEFT counters had rectangular scintillators
(% x 4 x 6 in3) with vertical light guides. The UP and DOWN counters had Y-shaped scintillators
(% x 6 x 2 in%) which allowed vertical mounting of the light guides hence avoiding conflict with
RIGHT and LEFT. The BACK counter had a square scintillator (% x 7 x 7 in3) with a hole
(1 in diameter) for the beam to enter. Between the BACK counter and the cryostat there was
a muon counter with a square scintillator (1 x 1 in?). A single FORWARD signal was produced
in the electronics by combining two counters with rectangular scintillators (} x 3.5 x 7 in®) with
a semi-circular notch (2 in diameter) removed from each to make room for a horizontal gas flow
cryostat. Together the scintillators form a square (% X 7 x 7 in®). The FORWARD and BACK
counters were pulled away from the RIGHT and LEFT counters so that there was no overlap
of solid angles. The tips of the “Y” in the UP and DOWN counters were allowed to overlap
slightly with the FORWARD and BACK counters to maximize the solid angle subtended by the
UP-DOWN-RIGHT-LEFT box.

~

The box of counters defines the laboratory reference frame, with UP-DOWN defining the X

axis, RIGHT-LEFT defining the ¥ axis and FORWARD-BACK defining the Z axis (see Fig. 2.10).
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The projection of the decay positron asymmetry (proportional to the muon polarization) onto the
plane normal to each axis of the coordinate system is recorded by the corresponding pair of
positron counters. The theory or sample reference frame (i-¢-2) is defined by the angle of the
average field (B, || 2) relative to the & axis of the anisotropic superconductor. If the direction
of the magnetic field were fixed relative to the laboratory frame, the sample would have to be
rotated for each desired 6. This would limit the number of angles available because at extreme
angles the disk-shaped sample would subtend very little of the muon beam spot. Instead, the
sample was fixed with ¢ || Z and we rotated the applied field (using two orthogonal Helmholtz

coils) and the initial muon spin direction (using a muon spin rotator).

In this experiment, our choice of collimation inadvertently stopped many muons in the final
collimator. The resulting y-ray shower (from decay positrons travelling through the lead shielding)
produced a large unexpected “random” background which decreased with time. However, we
estimate the random background for a given counter by counting the events which occur within a
fixed time interval (250 ns) prior to the muon entering the muon counter. Subtracting this over-
estimated random background from the counter histogram distorted the “background corrected”
data, culminating in the number of events actually going negative at long times! This produced a
resonance-like distortion in the asymmetry (see Sec. 2.5.2) at approximately 11 us, which is why

the representative data shown in Fig. 2.6 has the asymmetry cut off prematurely at 8 us.

5.3 The Chains Model Versus the Frozen Model

As discussed briefly in Sec. 4.3, a single vortex has local fields with components B, which are
negative along the Z axis (see Fig. 1 of Ref. [67]) when the applied field (B, || 2) is not along one
of the principal crystallographic axes. Since the vortex—vortex interaction is proportional to B,,
this gives rise to an attractive force between vortices in the £ direction, whereas in an isotropic
superconductor the force is always repulsive. According to the “chains model,” chains of vortices
tend to form along the  direction, with the density in the ¢ direction reduced accordingly so that

the average field is maintained.[67, 69] The preferred chain spacing is equal to the distance from

the center of a single vortex to the minimum in B, (7). In high fields, the distance between vortices
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is much smaller than the preferred chain spacing, so the effect is reduced. In the limit of very
high fields, the ratio p of the sides of the isosceles triangle forming the unit cell is a function of
the angle 6 and the anisotropy I' = A\;/Ag, but is independent of the average field (see Sec. 4.3.1).

In low fields, p also depends on the average field (see Sec. 4.3.2).

In low fields, the penetration depth near T, is so large that the the superconductor must
be operating in the “high field limit” [A(8,T < T¢) > Lg, Ly, where L, and L, are defined in
Eq. 4.25.] As it is cooled down and enters the “low field limit” [A\(§,T < T,) < Ly, L], the FLL
will rearrange itself into the configuration predicted by the chains model only if the attractive force
along % is strong enough to overcome other microscopic forces such as pinning which may keep
the vortices in their original high field configuration. Pinning comes in two varieties—individual
pinning in which a single vortex occupies each pinning site and collective pinning in which a
bundle of vortices cluster near each pinning site. With collective pinning, the FLL might be able
to rearrange itself when the applied field is not along a principal axis. However, collective pinning
is only expected in those superconductors with low values for the Ginzburg-Landau parameter
(k=AE¢=1/ v/2), such as niobium; in high temperature superconductors, the value of s is much
too high. With individual pinning, the FLL geometry should be frozen in at the irreversibility

temperature.[85]

In YBagCu3O7_s, the irreversibility temperature Ty is very close to 7., especially in large
single crystals. (Refs. [86], [87] and [88] show the relative effect of morphology on the pinning for
BiySraCaCusOg as measured by pSR.) Rather than presume Tj(#) for an applied field of 100 G,
we assumed that the FLL structure at the irreversibility temperature is identical to that in the

high field limit; we refer to this model as the “frozen model”.

5.3.1 A Pictorial Exposé of the Chains Model and the Frozen Model

The chains model and the frozen model produce distinctly different FLL geometrjies and con-
sequently different theoretical SR lineshapes.[65] (Furthermore, the frozen model for low fields
looks very different from that for high fields.) In both models, the triangle formed by three ad-

jacent vortices in the FLL is an isosceles triangle. This gives rise to two distinct cusp fields with
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different amplitudes in the ideal 4SR lineshape, corresponding to the matching saddle points on
the matching edges of the isosceles triangle and the third saddle point on the shorter third edge.
Fig. 5.2 shows the lineshapes for an applied field of 100 G at § = 37.8°, for A~2 between 5 and 70
for both the chains and frozen models. (The bulk average of the magnetic penetration depth is
X = [AZA ]2 For T =5 and A2 = 20 um 2, Agy = 0.1220 um.) For the chains model, the
minimum field is nearly identical with the field at the matching saddle points (which lie halfway
between the chains). The third saddle point (which lies halfway between the vortices along the
axis) produces only a small bump in the lineshape. If that bump is ignored, the lineshape is remi-
niscent of the isotropic lineshape, though it is hard to see the shoulder between the minimum field
and the first cusp. For the frozen model, the lineshape resulting from the FLL is striking—there
are two pronounced cusps, and the minimum field extends much lower than in the chains model.
With an applied field along a principal axis of the superconductor, the two models produce the
same lineshape, with only one cusp. When the applied field is small, the lineshape is extremely
sensitive to its value. Even in an isotropic superconductor (or an anisotropic superconductor with
0 = 0°), the shoulder becomes more pronounced in low fields as the one in the denominator of

Eqg. 4.18 becomes significant.

Because the field is applied at an angle of 8 from the Z axis in the Z-X plane of the laboratory
reference frame, the polarization projection is ~ 100% in the Y direction but reduced by a factor
of &~ cos @ in the X direction and = sin@ in the Z direction, when the initial polarization is along
the z direction. Polarization projections in the X , Y and Z directions are shown in Fig. 5.3 for
the chains model with § = 37.8° and in Fig. 5.4 for the frozen model with § = 37.8°. Note that
the polarization at later times appears to be more uniform in the frozen model than in the chains
model. This is because the frozen model produces a wider lineshape (Fig. 5.2), which reflects the
more rapidly dephasing polarization. The asymptotic values at long times seen in Figs. 5.3 and 5.4
are exactly equal to the projections of the non-oscillatory portion of the polarization ﬁ(t—)oo)
introduced in Eq. 2.42. Fig. 5.5 shows the angular dependence of the calculated polarization
projections in the X, Y and Z directions for the chains model when A~2 = 20.0 pm. Note that
as @ progresses from 0° to 90°, the polarization dephases less rapidly reflecting the increase of the

effective penetration depth A(6) from Agy to vV AgpAe.



5.3. The Chains Model Versus the Frozen Model 117

Figure 5.2: Theoretical field distribution [n(B)] in a field of 100 G applied at § = 37.8° to a
crystal with anisotropy of I' = A;/Ag = 5 for the chains model (with no pinning) [top] and the
frozen model (with pinning near 7, as the crystal is field cooled) [bottom]. The portion of the
lineshapes above 100 G has been discarded for clarity. The range shown for the “scaling factor”
A2 is 5.0 to 70.0 pum~2. The vertical axis is the probability density (or lineshape) n(B). The
arrows point out the two cusp fields (for the chains model, the second cusp bump is so tiny that
it is hardly visible). The figures on the right are the figures on the left rotated by 180°. Note that
the jaggedness of the cusps is merely an artifact of discrete calculations.
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Figure 5.3: Polarization projections [Px(T), Py (T), Pz(T)] as a function of A~2 for B, = 100 G
and 6 = 37.8° in the chains model with no pinning. There are 10 grey scales, ranging from black
for polarization parallel to that axis [P;(7T") = 1] to white for polarization antiparallel to that axis
[P(T) = —1]. The initial polarization is along &, P(0) = &.
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Figure 5.4: Polarization projections [Px(T), Py (T), Pz(T)] as a function of A~2 for B, = 100 G
and @ = 37.8° in the frozen model with pinning near 7, as the crystal is field cooled. There are
10 grey scales, ranging from black for polarization parallel to that axis [P;(7") = 1] to white for
polarization antiparallel to that axis [P;(T) = —1]. The initial polarization is along Z, P(0) = Z.
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Figure 5.5: Polarization projections [Px(T), Py(T), Pz(T)] as a function of 6 (from 0° to 90°)
for B, = 100 G and A\~2 = 20.0 gm and I" = 5 in the chains model with no pinning. There are
10 grey scales, ranging from black for polarization parallel to that axis [P;(7") = 1] to white for
polarization antiparallel to that axis [P;(T) = —1]. The initial polarization is along Z, P(0) = Z.



5.3. The Chains Model Versus the Frozen Model 121

1 O I I I I |
P(0) : N

3 : 2

S 05 S B
5 PO 2
I ' < =
- oo f————————{ E
2 PO ®
(o] ' —_

o . S
s —05 : 1 =
& : 3
' x
-10 L 1 1 1 . ,
0 20 40 60 80 0 20 40 60 80
Angle between B and c—axis. Angle between B and c—axis.
10 I I I I I I I L
N o :
> % :
x . '

- > '
o = !
T : £ :
L 00k ————— — — - —4 £ .
& S : 5
s —05 F ~ ' o
8 P,0) > ; K

~ o ' 14
-10 [ 1 1 1 - T 1 1 1 1
0 20 40 60 80 0 20 40 60 80
Angle between B and c—axis. Angle between B and c—axis.

Figure 5.6: The muon polarization ﬁ(t) projections on the X, ¥ and Z axes and the #, § and 2
axes at time ¢ = 0 and as time t — oo as a function of angle 6 between the average field B and
the Z = ¢ directions. The value as ¢ — oo represents the non-oscillatory portion of the muon
polarization. These values are used in the fitting tables. The angle between the original muon
spin direction and the Z direction is ¢ = 90° + @ for @ between 0° and 67.5°; that is, the initial
polarization is along z, P (0) = . The angle ¢ is restricted to a maximum value of < 165° because
the spin rotator cannot filter out beam line positrons at larger angles. In this case, when 8 is
between 75° and 90° (separated by the vertical dashed line), ¢ is fixed at = 165° and the muon
spin direction and the magnetic field direction are not perpendicular. If they were, the asymptotic
value for the polarization projections Py(t), P,(t), Px(t) and Pz(t) would decrease smoothly to
zero as 6 goes to 90°.
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Fig. 5.6 shows the polarization P(¢; P, = 2) (from Eq. 2.45) projected along the axes associated
with the 2-¢-2 and X-Y-Z reference frames at times ¢t = 0 and ¢ = co. Note that the polarization
projection Py (t) along the direction of the original polarization [P(0) = ] is non-zero, reflecting
the presence of transverse components of the local field. Also, for 8 # 0 or 90 degrees, P,(t — o0)

is non-zero due to the fact that the field distribution is “correlated” (see Secs. 2.6.4 and 4.5.2).

5.4 Experimental Results

5.4.1 Fourier Transforms of RIGHT/LEFT Counters

The motivation of this experiment was to verify the existence of chains by direct inspection of the
lineshape or by detailed fits of the angular dependence of the lineshape. Fig. 5.7 shows the Fourier
transforms of the projection of the muon asymmetry along the Y axis (RIGHT-LEFT counters).
Because the Y axis is perpendicular to the applied field, the envelope function for the Y axis
projection of the muon asymmetry A, Py (¢) (which is proportional to the muon polarization) is
maximal, while envelope functions for the projections along the X and Z directions are reduced
by factors of cosf and sinf, where @ is the angle of the applied field. As discussed extensively
in Sec. 3.3.2, the “flattened” real Fourier transform amplitude Sy, | (v) is only roughly equal to
the probability distribution of local fields n,(v)dv = n(B)dB where v = 3-B. The flattened
real Fourier treansform amplitude S, y(v) should be equal to the unflattened Sy (v) because
Py (t — o0) is predicted to be zero in Sec. 4.5.2. Unfortunately, the degree of disorder in the
FLL washes out the details of the lineshape so the two cusps are indistinguishable. As well, the
background signal is quite large and sits about where the second cusp for the chains model might
be. However, the general characteristics of the angular dependence of the penetration depth can
be observed. Both the overall linewidth and the shift of the cusp relative to the background signal
(= B,) are proportional to the inverse square of the effective magnetic penetration depth (see

Eq. 4.8)
32
(my cos? @ + my sin? 0)1/2(m3 cos? @ + m, sin? §)1/2

A72(0) = (5.1)
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Figure 5.7: The uSR lineshape Sy (v)dv = Sy, (%%B) %% dB [the real FFT of the
LEFT-RIGHT counters] in 100 G as a function of the angle 6 between the applied field and
the ¢ axis of a mosaic of YBapCu3Og.95 crystals. (The muon gyromagnetic ratio -y, has been
removed.)
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As the angle 0 between the average field and the ¢ axis is increased (up to m/2), the whole

lineshape shrinks.

Note the “glitch” at twice the average field, 200 G, the amplitude of which increases with
increasing angle. It appears because the counters are not exactly centered about the sample (see
Sec. 2.5.3 on the problems due to the relative phase of counters). The LEFT and RIGHT counters
extend symmetrically in the X and —X directions but are offset in the +Z direction (upstream)
to minimize air gaps between the cryostat window, the muon counter, the BACK counter and the
beam pipe’s window.* (Since the beam spreads by multiple scattering in air, it is best to minimize
the amount of air through which the beam must travel.) As 6 increases, the placement of the

RIGHT-LEFT counters becomes more asymmetric with respect to the muon precession cone.

In this chapter, all errors bars shown for fits of individual experimental runs are returned from
MIGRAD, a x? minimization routine in the CERN fitting package MINUIT which is used in the
uSR fitting program MSRFIT. The fit parameters and errors quoted for the curves through the
data were calculated using a weighted least squares fit (also known as x? minimization) using
the Gauss-Newton method, as implemented in TRIUMF’s PLOTDATA program. In Fig. 5.7, the
FFT errors are estimated by the standard deviation of the noise in the real Fourier transform.

All errors quoted are statistical errors and do not include any systematic errors.

5.4.2 Simple Gaussian fits

To quantify the anisotropy of the penetration depth, the low field data taken at a temperature of
10 K were fit to two Gaussians in the time domain, one fitting the cusp region and the other the
background signal. No attempt was made to introduce an additional Gaussian for the tail region.
All three pairs of counters were fit simultaneously. The non-oscillatory asymmetry, which is small
compared to the oscillatory asymmetry, was ignored in the fits by allowing it to be absorbed
into the a parameter. (This simple method of fitting was intended to demonstrate the general
tendencies in the data; in no way was it intended to be a high precision fitting method.) Fig. 5.8.a

shows the oscillatory asymmetry as a function of angle for all sets of counters. Note that the Y

*For safety reasons, the uSR apparatus is not allowed to share the same vacuum as the muon beam line.
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Figure 5.8:

a. Angular dependence of the asymmetry at 100 G, in the X counters (circles), in the Y counters
(triangles) and in the Z counters (upside-down triangles). Notice that the asymmetry in the in
the ¥ counters is constant, to within our ability to apply fields orthogonal to the muon spin
directions.

b. Angular dependence of the average magnetic field in the silver background at 10 K (triangles),
the combined superconductor and silver signal at 100 K (diamonds) and the cusp fields in the
superconductor at 10 K (circles).

c. Blowup of the angular dependence of the silver background at 10 K (triangles) and the
combined superconductor and silver signal at 100 K (circles).
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projection of the asymmetry is roughly independent of angle, the X projection of the asymmetry
shows a cosf dependence and the Z projection of the asymmetry shows a sinf dependence.
Fig. 5.8.c shows the angular dependence of the background signal at 10 K and the total signal
(superconductor plus background) at 100 K. The difference between these two signals (about
0.3 G) may reflect the flux expulsion. Magnetization measurements taken in a single crystal with
B || é suggest that the flux expulsion should be about 0.2 G in this mosaic (see Sec. 4.9), which

is close to the observed 0.3 G.

The expected angular dependence of the effective penetration depth in the Z-¢ plane is given
by Eq. 5.1. In high fields [A(#) > L, L,], the angular dependence of the lineshape’s second

moment relative to the average field B, is

dB(6) = \/ ((B(F) = Bo)?)# = 6 Bmax (I 2 sin? 0 + cos® §)'/? (5.2)
and the shift of the cusp field from the average field is
Beusp(8) — By = —AB (D 2sin? 0 + cos? §) /2, (5.3)

with the anisotropy ratio I' defined by I' = A./Ag- The second moment is essentially the line-
shape’s width which is proportional to the relaxation rate in the time domain. These formulas
should not be valid in low fields, since both Beysp, — B, and the linewidth ¢B(6) are no longer
independent of the applied field B, becuase the ones in the denominator of Eq. 4.14 are not

negligible.

Fig. 5.9 shows the angular dependence of the second moment and the cusp field in the chains
model with Ay = 0.1220 pm, field B, = 100 G and anisotropy ratio I' = 5. For the sake of
comparison, the second moment of the field distribution has been fit to Eq. 5.2 with dBnax =
70.20 £ 0.44 G and a fixed anisotropy ratio I' = 5. The shift of the cusp field from the average
field has been fit to Eq. 5.3 with AB = 36.73 £ 0.44 G and a fixed anisotropy ratio I' = 5.
These equations are only valid when the spacing between vortices L is much smaller than the
average penetration depth, which is definitely not the case here. However, they provide a guide

for comparison between the theory and the experimental results.
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Figure 5.9: The angular dependence of the second moment and the cusp field expected from the
chains model (squares) with A, = 1220 A, field B, = 100 G and anisotropy ratio I' = \./Ag = 5.
Curves show the behavior expected in high applied fields (Egs. 5.2 and 5.3), so they are not
strictly correct in this case.
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Figure 5.10: The angular dependence of the field inhomogeneity (as estimated by the width of a
Gaussian fit) and the cusp field measured in a mosaic of YBayCu3QOg.95 crystals in 100 G. The
asymmetry signals were fit with two Gaussians, one representing the silver background signal and
the second the “smeared” cusp region of the superconducting signal. (Some asymmetry was lost
since the fast relaxing portion was not explicitly fit.) For the field inhomegeneity, the supercon-
ducting signal at 10 K (circles), the background signal at 10 K (triangles), and the combined
superconducting and background signals at 100 K (diamonds) are shown. The superconducting
signal’s inhomegeneity (circles) in the upper frame is shown with a straight line as a guide to the
eye. The curve in the lower frame shows the behavior expected in high applied fields (Eq. 5.3),
so it is not strictly correct in this case.
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Fig. 5.10 shows the fit of the shift of the experimental cusp field from the average field to the
formula in Eq. 5.3 with the addition of a constant ¢. With the anisotropy ratio fixed at I' = 5, the
fit results are ABey, = 28.760 £0.065 G and a constant ¢ = 4.755 & 0.035 G. If ¢ were negative,

it might represent flux expulsion. By scaling the chains model results,

ABexp N2y = AByn Ny, (5.4)

exp

the estimated magnetic penetration depth of the sample is between 0.1380 pm (using ABeyx, =
28.760 G) and 0.1510 pm (using ABexp, = 28.760 + 4.755 G). The odd result of the constant
¢ being positive may simply reflect the results of neglecting a possible angular dependent flux
expulsion and the shift of the cusp due to “smearing” from disorder in the FLL. The results of
these simple Gaussian fits should be regarded as purely qualitative. From Sec. 4.9, the anisotropy

M(9=

of the magnetization of YBayCu3Og.95 [1\/[(7(/))2) ~ ' = (Ac/Aap) = 5] partially cancels out the

O=m

angular dependence of the shape factor [% = % ~ 0.0208 for an ellipsoid with a ratio of

sides m = 75|, which suggests that a flux expulsion of 0.19 G when the applied field is parallel
to the ¢ axis (based on magnetization measurements in Sec. 4.9) will be no more than a factor of
ten higher (1.8 G) when H L & in this sample. This estimate assumes that there is no angular
dependence to the strength of the pinning or the irreversibility temperature, which is not the case.
Regardless, the flux expulsion in this sample is probably quite small, less than one or two gauss,

at all angles.

Fig. 5.10 also shows the angular dependence of the field inhomogeneity estimated by the
Gaussian relaxation rate for a Gaussian fit to the superconductor signal. This does not follow
the expected angular dependence for the second moment seen in Eq. 5.2 and Fig. 5.9, but instead

appears to be linear, with [in gauss]

By — Beusp(0) = (19.55 £ 0.44) + (—0.1617 £ 0.0067) 6. (5.5)

Qualitatively, the deviations from the high field formula for the shift of the cusp field (Eq. 5.3)
are similar for both the chains model and the experimental data. In both, the field is lower than
the high field formula at low and high angles. The pronounced cusp in the chains model falls

approximately halfway between the two cusps in the frozen model, so one might expect similar
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behaviour with a convolution that smears the two cusps into one. Since an anisotropy ratioI' =5
was assumed in the fit to the Ansatz formula, it is fair to say that the experimental results are
consistent with I' = 5, especially since the estimated value of the penetration depth in the a-b
plane (0.1380 pm < Ag < 0.1510 pm) is consistent with values from other measurements (such
as 0.1405 pm in in Ch. 6 and 0.1491 gm in Ch. 7). The lineshape is also affected by the degree
of disorder in the FLL but the angular dependence of this disorder is not fully known, so it is not

possible to fit " directly using this data.

Another pSR group [28, 84] obtained similar results by rotating a mosaic of crystals relative
to a fixed applied field. However, in the paper which shows the full angular dependence,[28] they
give results for a field of 3500 G with angles 6 between 0° and 45° and for a field of 220 G with
angles 0 between 45° and 90° which are consistent with an anisotropy of I' = 5 or 5.5. But a field
of 220 G is a little too low for the high field limit to be in effect, and the ramifications of this

point are not discussed in the papers.

While the range of relaxation rates reported by Piimpin et al.[28] is almost identical with the
values measured here (expressed as the second moment of magnetic field in Fig. 5.10), they ob-
served the expected angular dependence for the field inhomogeneity as estimated by the gaussian
relaxation rate while we observe it only for the cusp field and not for the inhomogeneity. This is
especially puzzling since both experiments fit the data to Gaussians. The ideal ySR experiment
would measure the complete angular dependence of A in a single high field, such as 0.2 T. Un-
fortunately, our spectrometer is not capable of producing fields greater than 100 G in arbitrary

directions.

5.4.3 Fits to the Chains and Frozen Models
5.4.3.1 Data Analysis

In order to fit the chains and frozen models, the TRIUMF solid state group’s uSR fitting program
(MSRFIT) was altered to use look-up tables for the X , YV and Z projections of the theoretical

polarization, with X , Y and Z defined by the position of the counters (see Fig. 2.10). The
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tables, indexed by time (¢ = 0 to 20 us) and scaling factor (5\;}12 =0.1, 5, 10, 15, ..., 55, 60, 65,
70, 80, 90, 100, 150 and 5000 pm~2), contain both “real” and “imaginary” polarization values
[P,-(t,B,S\_Z,H;PO = %) and Pi(t,B,/_\_Q,H;PO = g) for i = X, Y, and Z] calculated from an
applied field Eth = 100 G at an angle of 6 from the Z axis in the X-Z plane. The initial muon
spin direction is assumed to be orthogonal to the applied field in the X-Z plane (¢ = 7/2 in
Fig 2.11), except for when @ is greater than 75 degrees, in which case 1 + 6 is restricted to 165
degrees so that the separators will be effective in separating out positron contamination. The
anisotropic superconductor is assumed to have ¢é || Z. A complete set of tables was constructed
for each angle 6 required. The theory values given B,, A2 and initial phase 1 are read from the

tables as follows:

1. The time index ¢ and the scale index A~2 are multiplied by B,/By, giving

Bexp
exp Bth

) Bth

? Aexp Bexp

Piexp (texpa x;{%’a’¢;3exp) _ pith (t ,0,9; Byn = 100G> (5.6)

fori=X,Y, and Z.
2. A 2-D bi-cubic spline is used to interpolate between points.

3. Both the smearing (compounding in the time domain) due to disorder in the FLL and nuclear
dipole moments and the experimental initial phase i are accounted for using Eq. 2.77,
that is the oscillatory portion of the resulting polarization function is multiplied by the
Gaussian e_%(VNUBtV corresponding to the Gaussian convolution e_%(B [oB)* of the field

distribution reflecting disorder in the FLL due to pinning.

For each angle 0, a global fit was performed using a run with a temperature 7' = 10 K as well
as the run above T, (approximately 7' = 100 K). The run above T, was fit with A~2 fixed to the
small value (0.15 ym™2); since it contained no significant field components perpendicular to the
applied field, it could provide values for A4;(0) and «; which should hold for all runs at that angle
0. (Because the size of the flux expulsion could not be accurately determined, though it appears
to be small, the background signal and the superconducting signal were constrained to share the

same average field in the fits for all temperatures below T..) Because fits to runs below T, could
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confuse A4;(0) and «; with the relative size of the oscillatory and non-oscillatory asymmetries for
different values of A\=2, the runs were assumed to share a common initial asymmetry A;(0) and
normalization «; (see Eq. 2.16) for each set of counters (: = X,Y, Z). In principle, this procedure
should determine A;(0), o; and A~2 uniquely. Also, by using the run above T, we absorb any
small errors in the angles of the applied field and the muon spin (relative to the values assumed

in the tables) into the fitted values of A;(0) and «;.

Since the tables contain the full time dependent polarization function, including both oscilla-
tory and non-oscillatory portions, the fitted asymmetry A4;(0) for all the counters is independent

of the angle 6.

The program MSRFIT performs y?-minimization fitting of the data to the models using var-
ious routines in the MINUIT package. The MIGRAD routine is generally used to find the best
fit and a crude error estimate. More accurate (and usually larger) estimates of the parameter
errors are produced by the MINOS routine, which defines the error in a parameter as the devi-
ation which increases x? by one while all other parameters are free to vary. For this data, two
parameters (A2 and o) determine the linewidth, rather than just one, and the high field tail is
unaffected by smearing (o), so the convergence was slow even with MIGRAD. Given that MINOS
requires considerably more computational effort than MIGRAD, its use was not practical. This is
regrettable—it is precisely in cases like this that MINOS may yield a more accurate, albeit usually
larger, estimate of the error. The scatter in the data is also somewhat larger than the statistical
error alone because of systematic errors in setting the muon spin direction and magnetic field

direction—the data were taken on two separate occasions.

5.4.3.2 Results of Fits to the Chains Model

Fig. 5.11 shows the angular dependence of the initial phase which is produced by muon rotation in

flight through the fringe fields produced by Omni Prime’s magnets and by the TRIUMF cyclotron.

Fig. 5.12 shows the angular dependence of Ay (Agp = -1 3)), which must be constant if

I' = 5 as was assumed and if the chains model used to calculate theoretical polarizations was
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Figure 5.11: Initial phase obtained by fitting the data to the chains model in an applied field of
100 G.
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Chains Model Fit to YBOZCuSO
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Figure 5.12: A4 obtained from fits to the chains model assuming I' = 5 with an applied field of
100 G. The straight line is a fit to a constant Az = 0.1345 + 0.0019 pm. The curve shows the
function Agp = (Agp) + 0Agp sin(ch + duig) with ¢dyig fixed to —90°, (Agp) = 0.1377 £0.0019 pm,
dAqp = 0.0058 + 0.0025 pm and ¢ = 5.42 + 0.91 (corresponding to one oscillation every 66.44°).
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Figure 5.13: The width of the Gaussian convolution obtained from fits in the chains
model assuming I' = 5 with an applied field of 100 G. The curve shows the function
0 = 0,[[2sin%() + cos?(8)]'/2, with o, = 11.805 + 0.052 C.

correct. The penetration depth varies £0.0058 pm, with an apparent period of approximately
66°. If the anisotropy (I' = 5) were grossly underestimated, one would expect that A\;;(6) would

show a clear increase with increasing angle. It is not clear how the apparent behavior of A.;(6)

relates to any possible deficiencies in the model used.

Fig. 5.13 shows the angular dependence of the the width of the Gaussian convolution obtained

from the fit to the chains model. Notice that the fit to the Ansatz
o = 0o[T 2 sin?(0) + cos?(0)]'/2, (5.7)

assuming that I' = 5 is not a particularly good one. A higher anisotropy ratio would fit somewhat

better. Fig. 5.14 shows the deviation of vortices from their ideal positions in the FLL ({s2)"/%/L)
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Figure 5.14: Deviation of vortices from their ideal positions in the FLL ((32)1/ 2 /L) as calculated
from fits to the chains model with an applied field of 100 G.
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as calculated from fits to the chains model. While (52)1/ 2 /L is only about 4% at the lowest and
highest angles, it leaps up to 12% at 8 = 45°. The Lindemann criterion for a “melting transition”
(for unpinned vortices) or a “glassy state” (for pinned, static vortices) is that the disorder exceeds
about 10%.[89] It is also possible that the vortices are kinked, zig-zagging from one copper-oxygen
layer to the next or from one twinning plane to the next; only at angles of & = 0° and 90° would
they be relatively straight. Of course, the effect could be caused by misalignment of crystals in
the mosaic or it could be that the model used is completely inappropriate. If the FLL is frozen
in at a temperature close to T,, the overall linewidth at a given angle 6 that is not parallel to one
of the principal axes will be wider (see Fig. 5.2); in that case, the apparent increased disorder

occurs because the chains model ignores pinning.

5.4.3.3 Results of Fits to the Frozen Model

For the frozen model, fewer tables were made. Fig. 5.15 shows the angular dependence of the
penetration depth Ag, in the frozen model assuming I' = 5. Any apparent deviations from a
constant \;;(0) are somewhat smaller and have a longer period than those from fits to the chains

model.

Fig. 5.16 shows the angular dependence of the width of the Gaussian convolution obtained from
the fit to the frozen model. The width drops to zero for angles between 65° and 85°, which is an
unphysical result, suggesting that either the effective angular dependence of the penetration depth
is underestimated at these angles (implying that I' > 5) or that the frozen model is inappropriate.
The lineshape is relatively narrow at these angles (see Fig. 5.7), which means that there may not
be enough information available to find both A and the convolution width o. Therefore, there is no
reason to take seriously the surprising result that the convolution width (and therefore (32)1/ 2 /L)

goes to zero at high angles.
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Figure 5.15: Ay obtained from fits to the frozen model assuming I' = 5 with an applied field of
100 G. The straight line is a fit to a constant A;; = 0.1376 &+ 0.0017 pm. The curve shows the
function Agp = (Agp) + dAgp sin(ch + duig) with ¢dyig fixed to —90°, (Agp) = 0.1371 £ 0.0014 pm,
dAqp = 0.0064 + 0.0019 pm and ¢ = 3.41 + 0.26 (corresponding to one oscillation every 105.7°).
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Figure 5.16: The width of the Gaussian convolution obtained from fits to the frozen
model assuming I' = 5 with an applied field of 100 G. The curve shows the function
o = 0,[T?sin?(0) + cos?()]'/2, with o, = 11.77 £ 0.31 G.
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5.5 Discussion

The qualitative effects of the penetration depth anisotropy are clearly observable both in Fourier

transforms and in simple gaussian fits. An anisotropy of 5 is consistent with the data.

Originally, we hoped to determine the geometry of the FLL by observing two cusps in the
lineshapes, but disorder in the FLL (at least 4%) smeared the lineshape so much that most of the

detail was lost.

We then tried to fit the data using polarization functions corresponding to models for the two
extremes: the chains model in which the FLL is able to rearrange itself as the penetration depth
decreases with decreasing temperature and the frozen model in which the FLL is fixed near 7,
as pinning sets in. Gammel et al.[85] published flux decoration experiments on YBayCu3Or_g
crystals in low field which showed that the FLL geometry was consistent with the FLL being
frozen at about Ti,/T. = 0.92. (Note that here Tj,, corresponds to the average temperature at
which the bulk of the FLL freezes. Other measurements, such as magnetization, define Tj.; as the
temperature at which irreversibility first sets in.) This suggests that the frozen model (for which
we assume T, = T.) should be closer than the chains model to the true situation. The bizarre
results we obtained from fits to the frozen model at the higher angles may have occurred because
the irreversibility temperature is a function of angle, decreasing with increasing # or we may have
assumed too small a value for I'. Ideally, the frozen model should be modified to fix the geometry

at T (0).

Fits to both the chains model and the frozen model were difficult and time consuming be-
cause both A=2 and o contribute to the linewidth of the superconducting signal. Fits at angles
above 6 = 60° are particularly difficult due to the narrowness of the lineshape. Analysis with an
improved model would be circuitous since that would require data for Ti,, from flux decoration
experiments which already purport to measure what we are looking for. However, the existence
of transverse field components in the superconducting state could be confirmed by uSR by in-
specting the angular dependence of the asymptotic polarization projections Px(t—>oo;]50 = 1)

and P,(t—00; P, = #) in the case of an TF experiment or or by looking for an oscillatory signal
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in the projections P, (t; P, = z) and Py(t; P, = 2) which is not present above T, in the case of a

LF experiment (see Sec. 4.5.2.)

While the fits of YBasCu3zQOg.95 data in low fields to the full theoretical polarization functions
are quantitatively inconclusive beyond confirming the degree of anisotropy, they do serve as a
proof of principle: one can indeed use a full vectorized treatment of the muon polarization with
nonsymmetric field distributions. Perhaps this technique could be used to identify muon sites in
magnetically ordered systems (antiferromagnetic or ferromagnetic) or to study other systems with
distinctive local field distributions. Qualitatively, the Fourier transforms of this data (Fig. 5.7)
show a asymmetric lineshape characteristic of the field distribution in a FLL and have mini-
mum fields which are distinctly larger than zero gauss, which demonstrates that the FLL is not

completely random at low fields due to strong pinning, as suggested by Gorbunov and Smilga.[90]



Chapter 6

Intermediate Fields

6.1 Introduction

The London model (Ch. 4) is in the “high field” limit when the magnetic penetration depth A
is greater than the distance between vortices L = 1/2¢,/v/3 B,. Because the anisotropy in the
a-b plane in YBayCusOg.g5 is relatively small, the isotropic equations (Egs. 4.17 and 4.18) can
be used when the applied field Bis parallel to ¢. In the high field limit, this produces a uSR
lineshape in which “horizontal scale” parameters, such as the distance from the cusp field to the

average field and the square root of the second moment, are independent of field and proportional

to A72. At lower fields (A < L) the linewidth is smaller, as described in Ch. 5.

In the experiments and calculations discussed in this chapter, the applied field is always parallel
to the superconductor’s ¢ axis. The anisotropic London model that is used assumes that there is
no anisotropy in this configuration, i.e. m; = mo in Sec. 4.2; therefore the isotropic treatment is
sufficient when H || & In fact, there is a small anisotropy in the a-b plane, approximately 1.15 in
the magnetic penetration depth in YBayCu3Og.95.[91] However, since the applied field is along one
of the superconductor’s principal axes, the lineshape has very nearly the same shape for either an
isotropic or an anisotropic penetration depth and uSR is sensitive to only the average magnetic

penetration depth (see Ref. [65].)

The London model assumes that the Ginzburg-Landau parameter = A/£ is much larger than
one. It treats the vortex core as a singularity (Bcore — 00) in the local magnetic field. This breaks
down when the spacing between vortices is within one or two orders of magnitude of the coherence
length &, which is approximately the radius of the vortex core. While modifying the London model

with Eq. 4.32 partly compensates for the fact that the field is physically finite at the vortex core,

142
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Ch. 7 provides a more complete treatment. The general result is a decrease in the linewidth of
the pSR lineshape. However, Ref. [92] shows that the linewidth is approximately constant when
In(B/H,2) lies in the range of —9 to —4 for k = 70, so this range is more appropriately referred

to as the “intermediate field regime” (A > L and ¢ < L).

This chapter presents data taken in a mosaic of ¢-axis aligned crystals of YBayCuzOg g5 over a
temperature range from 5 K to 120 K in a field of 0.25 T applied parallel to ¢.* If we assume that
dHe/dT|y, = —1.65 T/K,[5] then the sample is in the intermediate regime at this field below
approximately 87 K. The mosaic, with an onset T, of 93.5 K as measured by specific heat, was
mounted with Apiezon N grease on a 99.9985% pure disk of silver, with the é-axis perpendicular
to the disk. The crystals covered an area 1.5 cm in diameter. (See Sec. 1.7 for a more detailed
description of the sample.) A magnetic field of 0.25 T was applied parallel to the the é-axis of
the crystals. The muons stopped in the bulk of the sample with their spins perpendicular to the

applied field and precessed at a rate proportional to the local field.

6.2 Analysis and Results

The error bars shown in the figures are MINOS errors for the superconducting signal and MIGRAD
errors for the background signal, where MINOS and MIGRAD are x? minimization routines in
CERN’s fitting package used in the SR program MSRFIT. As discussed in Sec. 5.4.3.1, the
MIGRAD error estimates are based on the correlation between parameters, whereas MINOS
error estimates are determined for each parameter by stepping its value along, allowing all other
parameters to vary in a new x? minimization at each position, and defining one standard deviation
as the change in value that increases the otherwise minimal x? by one. The fit parameters and
errors quoted for the curves through the data were calculated from a weighted least squares fit
(also known as x? minimization) using the Gauss-Newton method, as implemented in TRIUMF’s

PLOTDATA program.

In a real superconductor, imperfections in the vortex lattice “smear” the ideal lineshape. One

*The data in this chapter was originally presented in Ref. [93].
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can directly fit the experimental ySR lineshape to a range of ideal lineshapes (as a function of
Aap) convoluted with a range of Gaussians (as a function of width o). The best fit for a high
statistics run at 10 K (Fig. 3.5) with the average internal field fixed to B, = 2494.7 G (3.8 G less
than the applied field) has A = 0.1405 + 0.0092 pm and o = 17.7 + 2.4 G. (The corresponding
asymmetry spectrum for the 10 K run is shown in Fig. 3.4.) Assuming a flux expulsion of only
0.5 G reduces the penetration depth by one-half of its uncertainty, to Ag = 0.1352 + 0.0088 pm
with ¢ = 18.1 £ 2.4 G. Magnetization measurements (Sec. 4.9) in a single crystal from the
mosaic suggest that the flux expulsion from the mosaic as a whole should be 0.65 G. The ideal
superconducting lineshape has a cusp at a field lower than the applied field (see Fig. 4.3). After
convoluting, the distance from the average field to the cusp field is reduced by 25%. If the
convolution truly reflects the disorder in the vortex lattice due to pinning and the disorder is
frozen in place as the sample is field-cooled through the irreversibility temperature (a few degrees

below T.), one would expect o to have the same temperature dependence as A\~2(T).

6.2.1 Fits to Exponentials

Because the high field tail stretches to an extremely high field, it is very difficult to fit the London
lineshape with the average field as a free parameter; nevertheless, it can be done for runs with
high statistics. Since only the 10 K and 70 K runs have high statistics, another method for
estimating the temperature dependence of the penetration depth was required for the bulk of the
data. I have adopted the following empirical approach: The uSR data, representing the muon

polarization as a function of time, were fit using a pair of exponentials sharing the same phase:
_ —Aqt —Aot
A(t) = Aje cos(2m1t + ¢) + Age cos(2mvat + @) (6.1)

where the average field B; is given by v; = ;—;Bi and the exponential relaxation rate A; is
proportional to the spread of the local fields: A; = 7,(0B;). This is equivalent to fitting a pair of
Lorentzians centered about v; and v, to the Fourier transform (which corresponds to a probability
distribution of local fields). One Lorentzian represents the background signal from muons stopping
in the silver disk rather than in the crystals. The other Lorentzian represents the cusp region of

the superconducting signal, with the average field reflecting the experimental cusp field and the
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full width at half maximum reflecting both the intrinsic linewidth of the ideal lineshape and the

“smearing” due to imperfections in the vortex lattice. A pair of Gaussians was also tried,
1 2 1 2
At) = Ale_ﬁ(alt) cos(2murt + @) + A23_5(02t) cos(2mvat + @) (6.2)

where the Gaussian relaxation rate o; is proportional to the spread of local fields o; = 7,(dB;),
but the fits were much worse and the average field of the “superconducting” Gaussian did not
correspond to the experimentally observed cusp field. Neither empirical function accurately de-
scribes the “tail” region corresponding to the logarithmic increase of the local field at the vortex
core, so this empirical method is used only to reveal the qualitative temperature dependence and

should not be considered a valid means of determining A quantitatively.

The exponential fit values for superconducting signal are shown in Fig. 6.1 as a function of
temperature. The temperature dependence of the exponential’s average field (Fig. 6.1.a) was fit

to

c cr

B.(T) — Bap = AB, ll - (%)p] + CB% arctan (T — T“) (6.3)
between T'= 0 and T = 87 K, the range over which the lineshape width (measured here by the
shift of the cusp field from the average field) should be proportional to A~2. The arctangent
approximately represents the expected temperature dependence of the flux expulsion, with cr
fixed to a value of —1.378 K (from magnetization measurements) and cp varying. The critical
temperature T, was fixed to its onset value of 93.5 K. Since only the points with temperatures
below 87 K were considered for the fit, details of how the flux is expelled are unimportant; only the
total flux expulsion cp affects the fit. In Fig. 6.1.a the average magnetic field of the exponential
fit to the the cusp field is fairly well described by a power law with p = 2.61 £ 0.13 and a flux-
expulsion constant cg = —3.68 £ 0.64 G. Weak coupling s-wave BCS theory fits the temperature

dependence of the cusp frequency almost as well,

2 T-T,
B.(T) — Bap = ABpcs(T) + B arctan ( - ) (6.4)

with ¢g = —6.07 £+ 0.47.

If flux expulsion cp is fixed to the value of —0.65 G inferred from magnetization measurements

(see Sec. 4.9), the exponent of the temperature dependence of the cusp field is increased to
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Figure 6.1: Results of fitting uSR data taken at 2498.5 G with two exponentials.

(a) Shift of the average field of the two exponentials (triangles: background signal; circles: cusp
region of superconducting signal) relative to the applied field. The solid line is a least squares
fit to Eq. 6.3 with AB, = —27.39 £ 0.64 G, p = 2.61 £ 0.13, and cg = —3.68 £ 0.64 G. The
dashed line is a fit to a weak-coupling s-wave BCS model, with ABpcs(0) = —24.967 £ 0.76 G,
cg = —6.07 £ 0.47 G. For both fits, cr is fixed to —1.378 K.

(b) Lorentzian linewidths; (triangles: background signal; circles: cusp region of superconducting
signal). The solid line is a fit to Eq. 6.5 with AB, = 17.93 £ 0.70 G, p = 1.38 £ 0.17 and
cg = —4.74 £ 0.60 G, with ¢ fixed to —1.378 K.
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p =3.14+£0.14 G (see Fig. 6.2). If flux expulsion cp is fixed to the value of 0.0 G, i.e., no flux
expulsion, the temperature dependence increases to p = 3.26 £ 0.17 G (see Fig. 6.3). Note that

results shown in Figs. 6.2 and 6.3 are nearly indistinguishable.

It is reasonable to assume that the field gradient produced across the sample when pinning
interferes with flux expulsion should be no greater than the size of the flux expulsion. Therefore,
the linewidth should be fitted with an expression similar to Eq. 6.3, namely

A(T) = AB, [1 _ (£>p

T,

(6.5)

+ cGg arctan [T — Tc] .
T cr
Note that the effective Lorentzian linewidth shown in Fig. 6.1.b has an almost linear temperature
dependence, with p = 1.38 £+ 0.17 when ¢¢ is allowed to vary. The term cg = 4.74 + 0.60 G may
represent a field gradient due the effects of pinning on the flux expulsion process; it is of the same
order of magnitude as the flux expulsion seen in Fig. 6.1.a. A pair of exponentials was chosen over a,
pair of Gaussians because they fit the cusp region better; however, the temperature dependence of
the local field inhomogeneity due to the FLL and disorder is surprisingly linear. The temperature
dependence of the field inhomogeneity and cusp field position for an ideal FLL will be identical in
this field regime. If the disorder in the FLL is strongly temperature dependent, one might expect
that the field inhomogeneity for the disordered FLL to have a somewhat weaker temperature
than the cusp position, but not as much as implied by these exponential fits. Moreover, the
field inhomogeneity is inconsistent with the temperature dependence of the Gaussian convolution,

which represents the additional field inhomogeneity produced by disorder in the FLL, used in the

fits to the proper lineshape reported in Chapter 7 (see Fig. 7.15).

As seen in Fig. 6.2.b, assuming the field inhomogeneity produced by flux expulsion and pin-
ning (cg) is equal to the size of the flux expulsion cg = —0.65 G produces poor results. This
suggests the possibility that the flux expulsion may be greater than the —0.65 estimated from the
magnetization of a single crystal, perhaps because the sample is a mosaic with some holes rather

than a single crystal.
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Figure 6.2: Results of fitting uSR data taken at 2498.5 G with two exponentials.

(a) Shift of the average field of the two exponentials (triangles: background signal; circles: cusp
region of superconducting signal) relative to the applied field. The solid line shows Eq. 6.3 with
AB. = —29.83£0.59 G, p =3.14 £ 0.14 as determined by least squares fitting.. The dashed line
shows a weak-coupling s-wave BCS temperature dependence with ABpcg(0) = —32.7 + 1.3 G.
For both curves, cr is fixed to —1.378 K and c¢p is fixed to —0.65 G.

(b) Lorentzian linewidths; (triangles: background signal; circles: cusp region of superconducting
signal). The solid line shows Eq. 6.5 with AB, = 21.3 £ 1.1 G, p = 2.76 &+ 0.33 with ¢ fixed to
—1.378 K and c¢ fixed to —0.65 G.
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Figure 6.3: Results of fitting uSR data taken at 2498.5 G with two exponentials.

(a) Shift of the average field of the two exponentials (triangles: background signal; circles: cusp
region of superconducting signal) relative to the applied field. The solid line shows Eq. 6.3 with
AB, = —30.35 £ 0.67 G, p = 3.26 £ 0.17 as determined by least squares fitting. The dashed line
shows a weak-coupling s-wave BCS temperature dependence with ABpcg(0) = —33.6 + 1.4 G.
For both curves, c¢p is fixed to —1.378 K and c¢p is fixed to 0.0 G.

(b) Lorentzian linewidths; (triangles: background signal; circles: cusp region of superconducting
signal). The solid line shows Eq. 6.5 with AB, = 20.9 + 1.0 G, p = 2.58 &+ 0.29 with ¢y fixed to
—1.378 K and c¢ fixed to 0.0 G.
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Figure 6.4: Results of fitting SR data taken at 2498.5G with two Gaussians. The top shows
temperature dependence of the Gaussian field inhomogeneity (thin sample [diamonds] and thick
sample [upside down triangles]) and the bottom shows the cusp field (thin sample [triangles] and
thick sample [circles]|). The “thin” sample is the same one used in Chapters 5 and 7 and in Figs. 6.1
through 6.3 in this chapter. The “thick” sample differs in containing crystals with thickness 300
to 500 pm rather than 200 to 300 pm.

6.2.2 Fits to Gaussians

While the fits to two exponentials (Eq. 6.1) produce better fits to the high statistic runs at
10 K and 70 K than do fits to two Gaussians (Eq. 6.2), it is important to present the Gaussian
results for comparison purposes with previously reported uSR results,[29, 28, 24, 26, 27] which
used Gaussians to fit both unoriented and oriented samples. Fig. 6.4 shows the results of fitting
the 2.5 kG data with two Gaussians, one representing the background signal and the other the
cusp region. In this case, no fits are shown since a single power law (see Egs. 6.3 and 6.5)

cannot adequately fit the entire temperature range. In particular, both the field inhomogeneity
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Figure 6.5: Fit of the BCS dependence of [A\(0)/\(T)]? (dashed line) to a power law (solid line),
The exponent is 2.2685 £ 0.0385 and the normalization is 1.0270 £ 0.0056.

as estimated by the Gaussian relaxation rate and the cusp field shift have a T behavior over the

temperature range 25 K to 80 K while they are approximately linear below 25 K.

6.3 Discussion and Conclusions

Since a power law such as that used in Eqgs. 6.3 and 6.5 has no known theoretical basis, we should
briefly consider a power law approximation to BCS[94] (see Fig. 6.5). The exponent p = 2.27
obtained by fitting the BCS temperature dependence with a power law is very close to the exponent
p = 2 found for A=2(T’) by non-uSR. techniques.[95] Although the power law does not replicate
the BCS plateau at low temperatures, the error in the values for A~2(T') never exceeds 3%. In
the low temperature region (7' < 0.27,), uSR may help to to answer the following question about
the behavior of A\~2(7):[96, 11]
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e Is the sample an s-wave superconductor, with

~ e~ Bo/koT (97 Ay /R, (6.6)

e or does it have a superconducting ground state with low-lying excitations so that

X2(0)
(T

~ TP? (6.7)

Some possibilities which produce low lying excitations that are frequently discussed are triplet
p-wave, d-wave with point or line nodes and magnetic impurities.[96, 11] In particular line nodes
will produce a linear temperature dependence. Moreover, often many more than one possibility
can produce identical behavior. Impurity effects are expected to change the temperature depen-
dence towards T? at the lower temperatures for both d-wave (normally 7") and s-wave (normally
exponential behavior) superconductors. This may explain the 7 behavior observed in Ref. [95],

where the sample was a thin film.

Neither empirical function (two exponentials or two Gaussians) could be expected to fit all
features of the experimental data accurately since both have symmetric field distributions while
the FLL produces a very asymmetric distribution. It is rather surprising, however, that they
produce such different results when all features of the disorder FLL’s lineshape are expected to
have the same temperature dependence below the irreversibility temperature in the intermediate
field of 2.5 kG. Except for the cusp field in the case of the exponential fits, the ad hoc analyses
seems to suggest a linear temperature dependence at low temperatures, which has been con-
firmed by more accurate microwave measurements[97, 98] and by very recent high statistics uSR
measurements.[99] In the present data, the scatter at lower temperatures is too large to confi-
dently determine the exact temperature dependence, and hence the general characteristics of the

gap (uniform, line nodes or point nodes, etc.) cannot be unambiguously determined.

In the SR literature, unoriented sintered powders of YBagCuzO7_s[24, 25] are fit to Gaussians
over the entire temperature range and the temperature dependence of the Gaussian relaxation
rate is typically fitted with the Gorter-Casimir version of the two-fluid model (a power law with

exponent p = 4). The Gorter-Casimir behavior is an ad hoc description which only comes close
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to BCS predictions for strong-coupling s-wave superconductors. If the exponent p in Eq. 6.3
is allowed to float, it typically varies between 3.2 and 3.5 for unoriented powders for fits over
the entire range. Fig. 6.6 shows two unoriented sintered powder samples of YBaoCusO,, one
with an oxygen concentration of z = 6.556 (originally published in Ref. [26]) and the other with
z = 6.95 (originally published in Ref. [100]). They show a power law temperature dependence with
exponents p = 3.33£0.37 and p = 3.40£ 0.24 respectively, assuming no additional inhomogeneity
due to partial flux expulsion. Note that in the higher quality experiments on unoriented powders,
such as in Ref. [26], the low temperature points deviate from the fits in a way which suggests
a small linear temperature dependence. In particular, no uSR experiment on high temperature
superconductors with sufficient number of data points shows completely flat behavior at low

temperatures.

In our mosaic of oriented single-crystal YBayCuzQg.g5, the temperature dependence of A~2(T")
inferred from the cusp frequency (from exponential fits) was found to fit Eq. 6.3 with an exponent
p varying between 2.61+0.13 and 3.26 +0.17 depending on the amount of flux expulsion assumed.
If these data were treated the same way as published data on the linewidth of unoriented sintered
powders (i.e., ignoring the flux expulsion and including the points near 7, where the London
model breaks down) the exponent p = 3.26+0.17 from fits to exponentials would still be somewhat
lower than that observed in the unoriented powders fit with Gaussians. Using the results from
Gaussian fits or the field inhomogeneity from the exponential fits would give a decidedly weaker
temperature dependence. Therefore, the temperature dependence seen in the oriented single
crystals (B || ¢) is inconsistent with that seen in unoriented sintered powders. It is not clear
whether this difference is due to the effects of morphology (mm?-sized platelet-shaped crystals vs.
~ 50 micron sintered crystallites and different filling factors) on the pinning behavior or weak links,
or due to a temperature dependent anisotropy factor which affects the powder averaged linewidth
for the unoriented samples.[101] The data presented here certainly do not exhibit the plateau
at low temperatures characteristic of weak-coupling BCS s-wave superconductivity. However,
since this analysis does not unambiguously show the temperature dependence of the magnetic

penetration depth, we must turn to high field lineshapes and a less empirical treatment.
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Figure 6.6: Field inhomogeneity (as estimated by Guassian fits) in unoriented sintered powder

samples of YBayCu3Og.556 (triangles) and YBayCuzOg g5 (circles). The fits are to a power law
temperature dependence with exponents p = 3.33 = 0.37 and p = 3.40 £ 0.24 respectively.
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Certainly, single crystals are preferable over unoriented powders for measuring the temperature
dependence of magnetic penetration depth because the issue of the anisotropy is less important,
the lineshape is more distinctive, and the crystals are freer of impurities and microscopic defects.
Neither fits with exponentials nor fits with Gaussians provide consistent results. Even when taken
at face value, the temperature dependence determined can be strongly influenced by assumptions
such as the amount of flux expulsion. Full fits were not feasible due to low statistics, but even with
high statistics, full fits are difficult to do and produce results with a certain amount of scatter
due to the increase in the number of variables which change the fitting function in a similar
fashion. The lesson here is that even when dealing with single crystal data, the details of how the
temperature dependence of magnetic penetration depth is inferred must be carefully examined
for unintentional biases, and conclusions regarding the temperature dependence must be made

conservatively.



Chapter 7

High Field Lineshapes; Determination of H., and

7.1 Introduction

At higher fields (B 2 0.05H.2, where H.y is the upper critical field), the area occupied by the
vortex core, which has a radius of approximately the coherence length £, becomes significant
relative to the unit cell of the flux line lattice (FLL). This means the maximum field in the vortex
core has a non-negligible amplitude in the ySR lineshape; this shows up as an upper field cutoff
when B 2 0.05H.. In such high fields, the lineshape is determined by ¢ as well as by the magnetic

penetration depth A (see Fig. 7.1).

This chapter presents uSR data taken in fields of 1.9 T, 4.1 T, 4.7 T and 6.5 T, between
temperatures of 10 K and 75 K. An extensive analysis is presented using a modified London
model, which introduces a cutoff in the reciprocal lattice vectors (K ) to make the field finite at
the vortex core and introduces a term (1 — B,/H.2) to take into account the field dependence
of the superconducting order parameter. When the applied field is below about 25% of Hco,
the lineshape produced by this model matches the features of the exact theoretical lineshapes
produced from Gorkov’s equations[31, 75] while being relatively easy to express mathematically.
The Gorkov treatment requires assumptions about the Fermi surface and the degree of strong
coupling in order to calculate the field distribution. The effects of faulty assumptions must be
disentangled from the temperature dependence found for A and £. On the other hand, the modified
London model, being phenomenological, needs no such assumptions in order to calculate the field
distribution. The effects of the Fermi surface, strong coupling and so on may be inferred from the

temperature dependence found for A and £. The simplicity of the modified London model allows

the recasting of results presented here in terms of other models, be they conventional or exotic.

156
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Figure 7.1: Lineshape as calculated by the modified London model (Eq. 7.7) for an isotropic
superconductor with

(a) Hez = 90 T (or &4 = 0.0019 pm), A2 = 45.0 pum~2 (or g = 0.1491 pm), average field
B, =4.7370 T (indicated by the dashed vertical line) and convolutions of width 16.64 G (corre-
sponding to data taken at 10 K in YBasCu3Og.95) and 0.74 G.

(b) Heo = 47 T (or & = 0.0026 pum), A2 = 25.75 ym~2 (or A = 0.1971 pm), average field
B, = 4.7363 T (indicated by the dashed vertical line) and convolutions of width 8.51 G (corre-
sponding to data taken at 70 K in YBagCu30s.95) and 0.74 G.
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In isotropic BCS theory, the coherence length can be related to the upper critical field (see
Eq. 175 on p. 860 of Ref. [102]) by
(7.1)

where ¢, is the magnetic flux quantum. The horizontal scale and high-field cutoff of the uSR line-
shape are determined by A and ¢ coherence length respectively, or alternatively by A2 and H,.
Since the lineshape is more sensitive to A than to £ it would be convenient to assume the tempera-
ture dependence of ¢ or H.o from other experiments, but no reliable values exist in the literature.
The high temperature superconductor YBagCuzO7_;5 has a very high H.o(T=0); reported values
for H.o vary from 40 T (from pulsed fields[103]) to 130 T (from de Haas-van Alphen oscillations
using explosively-driven pulsed magnets[104]) to 190 T (from resistivity using explosively-driven
pulsed magnets[105]) when B || é. Its tremendously high value makes it quite difficult to measure.
Lower bounds for dH.o/d T |1, can be made from AC and DC resistivity measurements using
conventional static magnets, but measurements of H.o near T, are complicated by flux flow, flux
creep and glassy vortex phase transitions. Perhaps the most reliable estimates of dH.o/d T |1,
have been made using magnetization measurements in the reversible regime near T,, giving values
of d Heo/dT ranging from —1.65 T/K[5] in a single crystal of YBagCu3zO7 to —1.90 T/K]6] in an
aligned YBayCugO7_5 powder suspended in epoxy. Extrapolating H.o(T) over the whole temper-
ature range from values close to T is risky since it requires assumptions about the temperature
dependence of Hy. A consensus on Ho(T') well below T¢ is certainly lacking, so we cannot assume

values for Ho(T) in pSR fits.

7.2 Apparatus for High Timing Resolution in High Fields

7.2.1 Motive

We set out to take uSR data in YBaoCuszQOg.95 with applied fields high enough that the effects
of the finite vortex core become observable. Specifically, when the magnetic penetration depth is
one to two orders of magnitude larger than the spacing between vortices (L) and the coherence

length is only one order of magnitude smaller than L, the maximum field at the vortex core is
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seen as a distinct cutoff in the uSR lineshape. In YBasCusOg.95, the upper critical field is so high
that, with temperatures from 50 K to 75 K, fields from 2 T to 6.5 T are needed to observe this,

so extraordinary puSR equipment with superior timing resolution must be used.

7.2.2 Apparatus

Most uSR spectrometers are built with “traditional” paddle-shaped counters which have a rect-
angular piece of scintillator (e.g., i x 3.5 x 7 in?) glued to a Lucite light guide with a rectangular
cross section which is subsequently fluted and contorted into a cylinder with a 1.75 in diameter.
A photomultiplier tube (PMT), which converts the light into an electrical pulse, is attached to
the cylinder end of the light guide. The problem with this design is that every light ray from the
same event (i.e., a charged particle passing through the scintillator) follows a different path in the
light guide. For a given length light guide, the path length (and hence the time of transit) for a
given ray is determined by the angle at which the ray reflects off the rectangular sides of the light
guide. The larger the angle, the larger the number of reflections and the longer the path length.

The spread of angles determines the spread of transit times, and hence the timing resolution.

Our spectrometer used one muon counter and two positron counters with parabolic surfaces
designed to give all light rays roughly the same transit time.* Combined with the TRIUMF uSR
User Facility’s 7 T warm bore superconducting magnet, these counters comprise a high field, high
timing resolution spectrometer. Fig. 7.2 shows the portion of the apparatus (counters, cryostat
and beam pipe) which lie within the bore of the magnet. Fig. 7.3 shows the whole counters.
The positron and muon scintillators are placed at the foci of the first parabolic surfaces of their
respective counters. The counters are designed so that all the light is totally internally reflected
from the parabolic surfaces. After the first parabolic surface, the light travels parallel to the
sides of the counters. Just outside the magnet bore the counters have a 45° reflective surface
which turns the light path 90° and directs the light onto a second parabolic surface. At the 45°

turn, the muon counter splits into two focusing parabolas with semi-circular cross sections 180°

*The counter design was conceived by Robert Kiefl of U.B.C. Christoff Neidermayer of Universtit Konstanz
finalized the design and oversaw construction. Robert Kiefl, Andrew MacFarlane and Kim Chow of U.B.C. tested
the counters before use in the experiment.
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High Tinlﬂing Relsolution Counters

In Helios
|

Helios Bore

Muon Counte

R
I

Beam Pipe w/ Collimator

@)
|

—_
I

Y axis (Inches)

|
N
|

|
&N
|

Helios Bore

| |
6 -4 -2
/ axis (Inches)

Figure 7.2: High timing resolution apparatus. Several light paths are indicated by the dot-dashed
lines. The cross hatched area is the scintillator for the right positron counter. The source of
light rays for the muon counter is the 1 cm diameter by 500 pgm thick scintillator. The roughly
capsule-shaped groove near the end of the sample rod is the location of a carbon glass thermometer.

Helios is a 7 T superconducting magnet with a six inch warm bore.
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Figure 7.3: High timing resolution counters. The dashed lines indicate the hollowed-out portions
in the interiors of the counters.
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apart which focus the light onto two photomultiplier tubes (PMTs). Inside the magnet, the muon
counter has an annular cross section and the positron counters have semi-annular cross sections
for both the collecting parabolas and the straight portions. Because the light from the scintillating
portion is only transmitted to the portion of the parabolic reflective surfaces which lie behind the
focal points, the center-most portion of the light guide cross section is optically dead; when it is

removed, there is room for the cryostat and the beam pipe.

The second parabolic surface uses total internal reflection to focus the light upon on a mesh
dynode PMT (also known as a transmissive dynode tube). Conventional dynode tubes contain
a series of staggered cups relatively far apart—unfortunately Lorentz forces from stray magnetic
fields can deflect the electrons away from the next stage. Transmissive dynode tubes contain a
series of closely spaced wire meshes, so that even large stray fields cannot deflect the electrons
away from the next stage, especially if the tube is parallel to the field. The lengths of the two legs
of the counters were chosen such that each PMT is placed in a field parallel to its axis. Ina 7 T
field, the fringe field is approximately 350 G at the muon counter PMTs is and less than 700 G
at each positron counter PMT. The fringe field scales with the applied field. Using mesh dynode
PMTs allows shorter and therefore lighter and more efficient counters because larger fringe fields
can be tolerated; this compensates for the thicker cross-section required by the parabolic design.
Since internal reflection is not 100% efficient, the small number of reflections ensures a more
efficient light collection compared to traditional counters. This in turn compensates for the lower
gain of the mesh-dynode PMTs. The scintillators were made out of “Pilot U” material, which is

one of the faster scintillating materials available.

The size of the scintillators (10 mm diameter by 500 pm thick for the muon counter and
approximately a 1 cm cube for each positron counter) was chosen as a compromise. Bigger
scintillators produce more light, which produces a stronger signal in the PMT that allows for
better timing resolution. However, the counters work best if the light is a point source at the focus
of the parabolic reflector; the timing resolution becomes worse as the scintillator size increases
relative to the parabolic reflector because of extra reflections, unequal path lengths and even some

absorption of off-focus light rays. The sizes of the sample (8 mm diameter) and cryostat (14 mm
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wide at the sample) were minimized in order to maximize the size of the counter parabolas, since
larger parabolas are less sensitive to machining errors and to the size of the scintillators. A new
20 cm long sample rod, a longer radiation shield and a 2 in diameter, extra long vacuum snout were
made for an existing cold finger cryostat. The additional length was necessary to allow the cryostat
to reach into the Helios magnet and the high timing resolution counters. The snout narrowed from
2 inches in diameter down to a rectangular ending (14 mm by 1.5 in) for the last 2 inches. It has a
7 mm diameter Kapton window through which the muons entered. The radiation shield ended just
before the snout narrowed and single sided aluminized Mylar took its place as a radiation shield
for the sample rod. The sample was a mosaic of YBasCusQOg g5 crystals mounted with Apiezon
N grease on an 8 mm disk of pure silver with their ¢ axes normal to the disk (see Sec. 1.7). It
was attached to the sample rod using Apiezon N grease and covered with thin aluminum foil for
radiation shielding and thermal connectivity. X-ray Mylar (3.5 pm thick) was used as a final
covering for the sample to prevent an accidental thermal short between the sample rod and the
snout, which was at room temperature. The sample was 3—-5 mm from the Kapton window inside
the cryostat. A carbon glass resistor (CGR) thermometer was attached approximately 1 cm
behind the sample. A second CGR thermometer was on the cold finger’s copper block, which was
cooled with liquid helium. The thermal gradient between the two thermometers (approximately

19 cm apart) varied between 0.5 K and 2 K.

Pre-experimental tests of the counters suggested a timing resolution of 600 ps. We expected
something like 300 ps from consideration of the finite scintillator size. The remaining 300 ps may

be due to insufficient light for optimal timing resolution from the PMT signal.

Under experimental conditions, the uSR asymmetry in the rotating reference frame decreased
with increasing applied field (see Fig. 7.4). Asymmetry may be lost due to the intrinsic timing
resolution ¢t of the counters, the PMTs and electronics, which becomes comparable to the period
of the muon precession as the applied field is increased. The field dependence of this effect is

given by (from Eq. 7 in Ref. [106])

Ay(B) = A,(B=0) ¢~ (17 B)?/n2

Ay(v) = Ay(v=0) e~ (3™0)?/In2 (7.2)
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where the muon gyromagnetic ratio is ;—“ = 135.5342 MHz/T. Asymmetry may also be lost due

s
to the range of flight times (¢ + At) through the fringe field of the experimental magnet since
muons with different momenta precess by different amounts. Since the fringe field scales with the

applied field, the net depolarization due to this phenomenon is linear with applied field:

Ao(B) = Ao(B=0) (1 — CAt ;’—;B)

Ao(v) = Ap(v=0) (1 — CAtv) (7.3)

where C is the ratio of the average field the muons experience during their time of flight (both
inside and outside the magnet) to the applied field B and v is the muon precession frequency in
the applied field. Eq. 7.3 arises from the fact that the muons will be completely depolarized (and
the observable asymmetry will be zero) before they are implanted in the sample when the spread

of transit times At is approximately equal to the muon precession period,
~ -1
At = (C—“B) : (7.4)
27

For muons with a mean momentum of 26.2 MeV /c and a momentum spread of 3%, the spread of
transit times is 240 ps for a path length of 30 cm. (The sample was at the center of the Helios
magnet, so the muons must travel through 30 cm of the magnet’s bore. The fringe field outside of
the magnet is much smaller than that inside so it can be ignored.) If a field of 30.7 T were applied,
it would completely depolarize the muons in flight. (The maximum field Helios can produce is

7.0 T so this is not possible.)

Regardless of the cause, the loss of asymmetry places a practical limit on the choice of mag-
nitude for the applied field. Combining these effects gives an asymmetry with a field dependence
of

Ao(v) = Ag(v=0) e~ G/ 2 (1 _ capy). (7.5)

Fig. 7.4 shows the results of fits to the asymmetry loss. The solid lines show the field dependence
of the asymmetry assuming that the decrease is due to timing resolution alone (Eq. 7.2), which
gives §; = 796 £+ 22 ps and A,(v=0) = 0.0983 £ 0.0036, and depolarization alone (Eq. 7.3),
which gives CAt = 971 £ 21 ps and A,(v=0) = 0.1091 £ 0.0037. The dashed line shows the

asymmetry assuming loss due to both effects together (Eq. 7.5), which gives d; = 748 £ 25 ps and
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Figure 7.4: The solid lines show the results of fits to the field dependence of the observed asymme-
try assuming that the decrease is due to (a) timing resolution alone [Eq. 7.2 with §; = 796 + 22 ps
and A,(v=0) = 0.0983+0.0036] and (b) muon depolarization alone [Eq. 7.3 with CAt = 971+21 ps
and A,(v=0) = 0.1091 £ 0.0037]. Clearly, more data points are required to distinguish the
two effects. The dashed line shows the results assuming both effects together [Eq. 7.5 with
0y = 748 £ 25 ps and A,(v=0) = 0.1037 £ 0.0047] using At = 240 ps and C =~ 1.

Ao(v=0) = 0.1037 £ 0.0047 using At = 240 ps and C =~ 1. If the estimate of 3% for the muon
momentum spread is correct, this suggests that the timing resolution obtained for the counters,

PMTs and electronics (6t = 750 ps) is comparable to the value obtained from pre-experimental

tests (6t = 600 ps).

7.2.3 Muon Beam Oscillations

The muon beam line can be thought of as an optical system, with an image of the production

target being brought into focus approximately one meter from the end of the beam line where the
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sample is mounted. When there are large stray fields produced by the experimental magnet, the
muon beam delivery system and the ySR spectrometer cannot generally be treated as independent
subsystems. At low fields (< 0.5 T), the two systems are essentially independent. At moderate
fields (0.5 T to 1 T), the beam is narrowed in the center of the magnet for a long distance, so exact
placement of the sample is of less importance than at very low fields. At higher fields (> 1 T),
the beam envelope has nodes and antinodes within the magnet, with the distance between nodes
decreasing with increasing field and/or decreasing muon velocity (see Fig. 7.5 and Ref. [107]). A
momentum spread smears out the nodes and increases the minimum beam spot size. Worse, it
results in a spread of transit times through the fringe field and the magnet itself, which in turn
results in a spread in the amount of muon spin rotation. This causes a loss of muon polarization
before the muon is even implanted in the sample (see Eq. 7.3). For high fields, a tight muon

momentum bite is very important.

The node and anti-node behavior is, in part, caused by the the fact that muons will spiral
in a magnetic field which has components perpendicular to their momentum. The appreciable
fringe field of the Helios magnet flares away from end of the magnet, which means that there are

perpendicular components of the field off the beam’s axis.

The envelope is estimated to have a maximum amplitude of about 9 mm above 1.5 T.[107]
This means that a sample of 4 mm radius must be placed at a node in order to have a small

background signal (see Fig. 7.5). In general there will be quite a large background signal.

We used the small muon scintillator (1 cm diameter) to detect the luminosity of the beam
after final collimation as a function of field and momentum (see Fig. 7.6). When a node is at the
muon counter, the rate is maximum. When an anti-node is at the muon counter, the beam spot
is wider than the size of the muon scintillator and not all the muons are detected. The sample
is about 24 mm downstream from the midpoint of the final collimator; the ideal situation is to
have the node centered on the sample rather than on the collimation. The data taken at 4.1 T
seem to have been very close to this arrangement as the non-superconducting background signal
has a very small amplitude (see Fig. .12). The worst case is when the node is a little upstream

of the muon counter, so that the beam is blowing up at the sample. In this case, many muons
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Figure 7.5: Calculated beam envelope oscillations (X and Y directions) for magnetic fields of 5 T
and 6 T in the the TRIUMF M20 beam line. The beam envelopes shown are for the beam which
survives collimation by the upstream collimators #1 and #2. A schematic 8 mm diameter sample
is shown in a position where the beam is optimally focused on the sample at 5 T and is poorly
focused at 6 T. (Adapted from Ref. [107].)
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Muon Beam Focusing in Helios
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Figure 7.6: Muon beam focusing in the 7 T superconducting magnet Helios on TRIUMF’s M20
beam line, as seen by the high timing resolution muon and left positron counters, at three different
muon momenta.
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TRIUMF AN (m) AN/AD AN/AD
Beam Line B (T) | (for p =29 MeV/c) | (for p =29 MeV/c) | (for p = 26.2 MeV/c)

M15 0.5 0.0 n.a. n.a.

M15 2.5 0.254 0.095 0.105

M15 4.0 0.154 0.156 0.173

M15 6.5 0.0975 0.25 0.28

M20 4.0 0.154 0.156 0.173

M20 5.0 0.132 0.182 0.201

M20 6.0 0.1073 0.224 0.248

Table 7.1: Distance between beam oscillation nodes as calculated in TRIUMF design note
TRI-DN-92-1 (Ref. [107]), for beam lines M20 and M15. The distance between beam oscilla-
tion nodes is AN. The distance between the center of the built-in collimator and the sample is
AD = 24 mm, since the sample is 12 mm from the beam pipe and 24 mm from the beam pipe’s
built-in collimator. The ratio of ﬁ—g for p = 26.2 MeV/c is linearly scaled from p = 29 MeV/cm.
At very low fields, no nodes are produced and the beam focus point is at the center of the magnet.

will stop in the aluminum cryostat rather than going though the 7 mm window and hitting the
8 mm sample. Table 7.1 lists the approximate spatial distance between nodes at several fields,
the approximate ratio of the distance from node to node and the distance from the collimator to
the sample, using the calculations in [107]. As one cannot easily move the sample, cryostat and
counters within the magnet, one must change the field in order to minimize the background signal.
For a given muon momentum, the optimal field will be somewhat lower than the field which gives
the maximum rate. The spacing of the nodes as a function of field is inversely proportional to

the muon momentum. Table 7.2 shows the optimal fields estimated by

AN

Bopt = Bmax - ZE

(Bmax - Bmin) ) (76)
using the ratios calculated in Table 7.1.

In order to improve the quality of the data one could do the following:

1. Make the sample and cryostat window larger. Preferably the sample should be 18 mm in
diameter, so that problems of nodes and antinodes are moot. However, the positron counters
will have to be moved apart, which reduces their solid angle and exacerbates the loss of rate

as lower energy positrons spiral in high fields, missing the positron counters.
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Min. Rate at | Max. Rate at Optimal Focusing
Buin (T) Bhax (T) p (MeV/c) | AN/AD Bopt (T)

0.0 1.6 26.2 0.067 14
2.9 4.2 26.2 0.182 3.7
5.3 6.6 26.2 0.273 5.9
0.0 1.7 27.8 0.067 1.47
3.0 4.5 27.8 0.183 3.95
6.0 - 27.8 - -

0.0 1.9 29.0 0.072 1.63
3.3 - 29.0 - -

Table 7.2: Estimated optimal focusing fields for a sample which is 24 mm from the collimator,
using observed maximum and minimum fields from Fig. 7.6. The optimal field for focusing is
estimated using Bopt = Bmax — Qﬁ—g(BmaX—Bmin).

2. Make the muon scintillator smaller so that it is closer in size to the sample, preferably

smaller, so that all muons hitting the muon scintillator will also stop in the sample. This

acts like collimation.

3. Use a thicker sample so that higher momentum (up to about 29 MeV/c) muons may be
used. Increasing the momentum decreases the node separation so that more “ideal” fields

are available. Alternatively, the momentum could be tuned to suit the applied field.

4. Take care with the size and placement of the upstream “stripper” collimators (#1 and #2 in
Fig. 7.5) as these somewhat affect the envelope amplitude in the magnet (see Figs. 6 and 7
in [107]). Effective collimation near the sample is very difficult in the presence of nodes and

anti-nodes.
5. Introduce a veto counter behind the sample.
Since there are additional constraints on the choice of applied field, such as compatibility with

a “good” RRF frequency and the physics of the experiment, one cannot completely pander to the

nodes. Given that, the first two suggestions are the best.
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7.3 Modified London Model

Brandt[75, 74, 108] states that in fields less than approximately (1/4) H.2, the field distribution in
an isotropic superconductor as predicted by Ginzburg-Landau theory can be phenomenologically
approximated by modifying the London model (Egs. 4.17 and 4.18) as follows:
= £2K2
exp [—zK . r] exp l—m

B() =B,y 2 , (7.7
K 1+ 10

where K are the reciprocal lattice vectors of the FLL, & = £(T') is the coherence length, A = A(T) is
the magnetic penetration depth and b = B,/ H(T) is the reduced magnetic field. The exponential
involving the coherence length serves as a cutoff for the reciprocal lattice vectors at K =~ 27 /€,
which yields a finite value of the magnetic field at the vortex core (see Sec. 4.4). The term 1 —b
approximately reflects the field dependence of the superconducting order parameter[108, Eq. 28a]
which causes a reduction in the width of the lineshape at higher temperatures where the upper

critical field Ho(T) is relatively close to the applied field. (This effect is discussed in Ref. [92].)

The above equation can be rewritten in terms of the dimensionless quantities A, = \/L,

[ 29
L=, v (7.8)

is the spacing between vortex cores. Using the relation between H o and &,

& =¢&/L, #=7/L, §= KL, where

o
c2 — 271_52, (79)
the reduced field can be expressed as
47
b= —=& 7.10
ls (7.10)

and the fractional field difference for the modified London model is, in dimensionless quantities,

exp [—iq - Z] exp [_2(1 _ 5347!’/\/3)]

y:

1 —&24n/V/3

. (7.11)
Bo 7#0 1+
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Contour plots of the fractional field difference [B(7) — B,| /B, at the vortex core, at the saddle
point and at the minimum are shown in Fig. 7.7 as functions of A\, and &, and in Fig. 7.8 as

functions of ;2 and H.y/B,.

7.4 Ambiguity in the Determination of A and ¢

Note that in Fig. 7.7 while field contour lines for the saddle point and minimum are curved in the
opposite sense from the field contour lines for the vortex core, the curvature is mild considering the
large range for A\, and &,. If one uses the modified London model to fit data taken at a particular
field and temperature, one will find that many values of A and ¢ along a particular field contour
for the vortex core will all fit the data equally well. Fitting multiple runs taken at different fields
but the same temperature with common values for A and ¢ will reduce the degeneracy because
the curvature and slope of the contour lines changes with the average field B,. Note that this
discussion neglects uncertainties in determining the average internal field and the effects of pinning
on the lineshape. If one knows the value of £(T') accurately, say from measurements of H.o(T),
one can uniquely determine A\(T') and therefore x(T"). Conversely, if one knows the value of A\(T')
accurately, one can uniquely determine £(7') and therefore x(T) and Ho(T). This degeneracy is
starkly portrayed in Fig. 7.8, which also demonstrates how the lineshape becomes independent of

the upper critical field H.9, known as the London limit, when A~ 2 is small and H.y/B, is large.

7.5 Data Analysis

A special fitting program called FIT-GLOBAL-HC2, which uses the fitting package MINUIT, was
written to fit the lineshapes without the use of pre-existing tables. Since the field cutoff at the
core is observable in the high field data, no simple scaling of a single representative lineshape is
possible. Directly calculating the lineshape was simpler and more direct than interpolation using

a series of representative lineshapes.

The parameters for the fit were A2 and H., x ¢ 2, because they behave with the same

“dimensionality” as others such as the convolution ¢ and the linewidth of the background signal
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8. For example, if A2 is doubled the superconductor’s lineshape will double in width. If H.o
is increased, the cutoff field increases and the overall width of the lineshape increases as well.

MINUIT works best under these circumstances.

For given values of the parameters A\ 2, H., and B,, the spatial distribution of the local
magnetic field is calculated for an array of positions within the FLL unit cell and then interpolated
to increase the effective number of points. From this, a probability distribution of local fields (also
known as the theoretical lineshape) is calculated.! This is convoluted by a Gaussian of width o,
to mimic the effects of nuclear dipolar fields, disorder in the flux line lattice and the Gaussian
apodization used in the Fourier transform of the data. (The convolution can be done using Eq. 3.71
since the applied field is high enough that components of the local field which are perpendicular
to the applied field are negligible.) Finally, this “smeared” theoretical lineshape is multiplied by a
normalization ng. In addition, a simple Gaussian with width dp, average field By and normalization
ny is added to mimic the background signal due to muons stopping in the sample mounting or
the cryostat itself rather than in the sample. In summary, FIT-GLOBAL-HC2 uses a total of five

parameters for the superconductor lineshape:

1. the inverse square of the penetration depth A =2,
2. the upper critical field H.o,

3. the average internal field B,,

4. a Gaussian convolution of width o and

5. a normalization ng,

- % (B_Bo)

2 /2
and three for the background signal nye /% due to muons stopping in the cryostat:

1. a Gaussian width &,

2. the average background field By and

tThe routines used to interpolate between calculated points in the spatial distribution and to calculate the
lineshape were adapted from code written by Josef Rammer.
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3. a normalization ny.

The MINUIT package from CERN is a collection of routines which call a user-provided function
for x? given the current parameter values. MINUIT changes the parameter values until x? is
minimized. To speed up the fit, the “unsmeared” theoretical lineshape is only re-calculated when
the parameters A\~2 or Hy are changed. If the superconducting average field B, is changed while
A~2 and H,y remain the same, the previous lineshape is translated along the field axes by an

amount equal to the change of field.

The sizes of arrays, the number of points calculated within the FLL unit cell and other
numbers related to the discretization of the numerical calculation were chosen to reduce the time
of calculation. Because the time is proportional to the square of the number of reciprocal lattice
vectors, ¢2,./(27)% = €72 = (¢/L)72, analyzing YBayCu3Og 95 data taken at fields below about
1 T becomes impractical with this program since the distance between vortices is very much larger

than the size of the vortex core.

The program FIT-GLOBAL-HC2 allows several runs to be fitted at the same time with shared
parameters. This feature was used to fit with the same values of the parameters A\~2 and H,y all
the runs which share approximately the same temperature (within one degree) but have different
applied fields. Upon finishing, it produces several quantities in addition to the parameters corre-
sponding to the best fit. It calculates the minimum, cusp and maximum fields for the unsmeared
theoretical lineshape for the best fit. It also calculates the convolution width corrected for both
the degree of apodization in the Fourier transform and the nuclear dipolar fields as observed above
T. in the same applied field. Using this corrected convolution width, it calculates the estimated
mean deviation of the vortices from their ideal position in the FLL ((s?)!/2/L) for both random
compression and random shear. The Ginzburg-Landau parameter k = A/ is produced. And

finally, both the x% for individual runs and x% for the fit as a whole are recorded.

The data was difficult to analyze because three parameters, A2, H, and o, all contribute
to the width of the uSR lineshape. In order to get some leverage upon this problem, I made

preliminary fits assuming that the magnetic penetration depth has the following temperature
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dependence

AT =M0) [ = (T/TL)), (7.12)

with a zero temperature penetration depth of A(0) = 0.1405 pm and an exponent of p = 2.37,
values estimated from data taken in a 0.25 T field[93]. Since the lineshape varies slowly with
H.y, it was necessary to fit a series of runs with fixed H., for each temperature. This resulted
in k decreasing with decreasing field. A separate round of fitting assuming a BCS temperature
dependence of H.y using dH./dT, |r,= —1.9 T/K[6] resulted in k increasing with decreasing

temperature.

Because there is a range of values for A2 and H. which give nearly the same lineshape,
both cannot be fitted at the same time. In fact, the lineshape is so weakly dependent upon
H.o at the lower temperatures that the fits do not converge if its value is allowed to float. To
compensate, FIT-GLOBAL-HC2 was made to loop through a grid of the fixed parameters A\~2 and
H.y (FIT-GLOBAL-HC2-LOOP). With each change in A\=2 and H, A\~ 2 and H,, were fixed, the
superconducting average field B, for each run was scanned! between plus and minus five times the
estimated error in B, and, using MIGRAD in MINUIT, x% was minimized. Scanning B, before
minimization was necessary because the average field is very sensitive to the maximum field cutoff

(determined largely by H o) which is not always a distinctive feature.

The results of the preliminary analysis [assuming A(7')] were used as the initial guess in
the program FIT-GLOBAL-HC2-LOOP. In order to keep the computation time reasonable, the
convolution width ¢ was fixed to that from the preliminary analysis. The remaining parameters
ng, By, 0y, By and ny are all comparatively cheap to calculate. Because the unsmeared theoretical
lineshape is infinitely steep at the minimum field, the slope at half amplitude on the low field side
of the experimental lineshape determines the size of the convolution. Since x? minimization finds
the biggest, most distinct features (the low field shoulder), the fits will estimate the minimum
field (location) and the convolution (slope) more accurately than features such as the maximum
field. Even though ¢ was fixed using values from an incomplete series of fits, it should be fairly

accurate.

#The SCAN command in MINUIT minimizes x> by varying only the specified parameter.
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7.6 Results

7.6.1 Sample

A mosaic of YBayCu3Og.95 single crystals (see Sec. 1.7) was mounted on an 8 mm diameter pure
silver disk using Apiezon N grease, with the crystals’ hard axes (¢) perpendicular to the disk’s
face. The sample was mounted in a helium-cooled cold finger cryostat inside the warm bore of
TRIUMF’s 7 T magnet called Helios (see Sec. 7.2). The magnetic field, between 1.9 T and 6.5 T,
was applied parallel to the mosaic’s common ¢ axis. All the following results are for B || ¢ for
which the isotropic treatment in Sec. 7.3 is appropriate: A refers to the magnetic penetration

depth in the copper oxide planes (Aqy); Heo refers to Hy || é and so on.

7.6.2 Intermediate Results

To avoid burying this chapter in figures, the intermediate results are presented in Appendix .
For each target temperature (' = 10,20,...,60,70,75 K) runs with different fields (B, =
1.9,4.1,4.7,6.5 T) within £1° of that temperature were fit (together) using FIT-GLOBAL-HC2-
LOOP sharing only the parameters A 2(7) and H.(T). FIT-GLOBAL-HC2-LOOP produces a
grid of results (x%, X%, Bo, etc.) as a function of A= and H,s. Fig. .1 through .8 show the test of
goodness-of-fit x% as a function of A= and H,y for the individual runs. The best (lowest) x% for
each run is highlighted by a solid square and increasing values of X%z are indicated by smaller and
smaller boxes, thereby roughly indicating values of A™2 and H,., which give contours of similar
fit quality. If A=2 and H,, were completely independent variables, one would expect an elliptical
shape for contours of constant x% near the minimum. Instead there are curved “troughs,” which
show the high degree of correlation between A= and H,o. The troughs in x% tend to follow the
contours of constant average field extracted from the fits with the lowest x% for the individual
runs (marked “R” in the figures) and constant average field extracted from the fits with the lowest
total x2 for all the runs at different fields at that temperature (marked “I”). This suggests that

along the contour, the lineshapes are nearly identical (see Fig. 7.8).
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Figs. .9 and .10 show the combined goodness-of-fit X% = .1 feids X2 as a function of A\ 72
and Ho for all runs at each temperature. Because the individual X%z contours are curved troughs
which have different slopes at different fields, the total X% contours tend to have deeper and less
trough-like minima. In other words, by fitting to a common A ? and a common H,, for runs
of different fields at a given temperature, both A2 and H,, can be determined from the uSR
lineshapes. The uncertainties in the best values of A2 and H,, were estimated in terms of the
distance from the x% minimum in X%",min to X%,min + 1 (highlighted by a solid diamond). If there
were no points within 2 of x%min, then the uncertainties were estimated to be the step size in the
grid of A=2 and Hy over which X2T was evaluated. Due to the relatively coarse step size, the error

estimates for A™2 and H,, are sometimes rather rough.

The errors quoted for the remaining parameter of importance, the Gaussian convolution
width o, are MIGRAD errors. The calculated quantities &, X, & and (s2)!/2 /L for both random
compression and random shear are reported with propagated errors. When MIGRAD returned
an unreasonably large error for the average field B, (sometimes as large as B, itself), the error
was set to 2 G for the purposes of estimating the error in the maximum, cusp and minimum fields.
The curves shown in Figs. 7.9 through 7.16 are the result of a weighted least squares fit using
the Gauss-Newton method as implemented in TRIUMF’s PLOTDATA program. The parameter

errors quoted for these curves represent statistical error only.

Figs. .11, .12, .13 and .14 show the experimental lineshapes and fits with all measured tem-
peratures shown for each applied field. The lineshapes are all shown relative to the background
signal (centered at 0 G), the values of which are listed in table .1. The linewidth increases with
decreasing temperature, reflecting the temperature dependence of A. Figs. .15, .16, .17 and .18
show the same lineshapes and fits for selected temperatures with all applied fields shown for
each temperature. Because the uSR signal amplitude is reduced with increasing applied field
due to loss of timing resolution and muon dephasing (see Sec. 7.2), the Fourier amplitudes have
been re-normalized so that the superconducting lineshapes all have the same area. These figures
demonstrate that the lineshape narrows slightly and the maximum local field is reduced with

increasing applied field. These changes in the lineshape are most dramatic at 70 K (Fig. .18)
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where the available fields cover the largest range of reduced fields B,/H2(T). Here the lineshape
shows a very distinct high field cutoff at the highest measured field of 6.5 T, while at the lowest

field the lineshape looks almost London-like with the cutoff field nearly lost in the noise.

7.6.3 ) (T), He | o(T) and kg (T)

Fig. 7.9 shows the temperature dependence of the best-fit values of the inverse square of the the
penetration depth in the copper oxide planes (/\;bQ)' Fitting to a power law yields an exponent of
p = 2.8940.23. The results do not support the Gorter-Casimir version of the two-fluid temperature
dependence (A2 o< 1 — {T'/T,}? with p = 4) reported in sintered powder samples.[100, 24] The

BCS weak coupling s-wave temperature dependence does not fit as well as the power law.

Fig. 7.10 shows the temperature dependence of the upper critical field H.o. Since H. o has
relatively little influence on the lineshape at lower temperature, results below 30 K are not well

determined, and so were excluded from the fits to the various models, The weak-coupling s-wave



7.6. Results 181

120 RN AN AN FEEEE AT AN SN TS SRR R TS NN

100

80

60

|_|c2 (T)

40

20

0
0O 10 20 30 40 50 60 70 80 90100
Temperature (K)

Figure 7.10: Ho(T) for B, || ¢ from global fits of the high field data. The low temperature runs
at 10 K and 20 K were excluded from the fits. The solid line is a fit to He(T') = ¢(1 — {T'/T,}?)
with ¢ = 77T+ 13 T, p = 2.28 £ 0.76 and 7, fixed to 93.5 K. The dotted line is a fit to the
temperature dependence of H.o for an s-wave BCS weak coupling isotropic superconductor, with
dH./dT = —1.42940.083 T /K. The dashed line is a fit to the temperature dependence of H o for
a superconductor with a cylindrical Fermi surface (i.e., 2-D), with dH.o/dT = —1.5114+0.078 T /K.
Since H.o has relatively little influence on the lineshape at lower temperature, results below 30 K
are not well determined, and so were excluded from the fits to the various models.
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BCS temperature dependence for H.o in an isotropic superconductor cannot be distinguished in
Fig. 7.10 from that in a 2-D superconductor with a cylindrical Fermi surface (see Ref. [31] and
references therein). Fitting to a power law yields an exponent close to two. Fig. 7.11 shows the

parameters A\~2 and H, recast as A and &.

The Ginzburg-Landau parameter x (Fig. 7.12) essentially shows no temperature dependence,
if one ignores the points below 30 K where the values of H s are less reliable. The fit to a constant
gives the Ginzburg-Landau parameter £ = 69.6 £ 1.4. The value for k£ should be independent of
temperature if YBayCugQOg .95 is a weak-coupling s-wave BCS superconductor. There could be a
weak temperature dependence for k which is unnoticeable beneath the large error bars for the
measured values (7T"), in which case YBagCu30Og.95 could not be a weak-coupling superconductor.
Linear regression produces a line with a slope smaller than its error bar, so a linear fit is no
better than a fit to a constant. However, the linear fit gives a more generous error of 6.0 for
the value of k. The value of 70 & 6 is consistent with the average value of 72 found by Gohng
and Finnemore[6] using reversible magnetization in the temperature range between 7, and the

irreversibility temperature.

The non-monotonic behavior of Hee and k (seen as a maximum at 20K) is likely spurious,
reflecting the uncertainty of determining H.o at lower temperatures. The error bars at 10K and

20K are probably underestimated due to the course step size used in the fitting method.

7.6.4 The Local Fields Versus Temperature

Fig. 7.13 shows the temperature and field dependence of the maximum By, cusp B¢ and minimum
By fields. These fields are all relative to the average field B, of the superconducting signal. They
are not the parameters used in the calculation of the lineshape, but rather they are features of the
unsmeared theoretical lineshape which fit the experimental data best when \~2(T) and H(T)
are shared for all fields at a given temperature 7. The curves shown are the result of fits to By,
B¢ or By = ¢(1 — {T/T,}?), individual values of which are listed in Table 7.3. Note that B¢
and Bjs have exponents p close to 2, while By has an exponent p between 1.5 and 1.0. In all

cases, the exponent (which is always smaller than that for A~2) is reduced when the applied field
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Figure 7.11: X and ¢ from global fits of high field data.
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Figure 7.12: x from global fits of high field data. The solid line is a fit over the range 30 K to
75 K for a constant k, with x = 69.6 £ 1.4. The dashed line is a fit to a linear temperature
dependence, with £(0) = 74.0 £ 6.0 and a slope of s = —0.08 £0.11 K~!. Since H. has relatively
little influence on the lineshape at lower temperature, results below 30 K are not well determined,
and so were excluded from the fits to the various models.
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Figure 7.13: Maximum (a), cusp (b) and minimum (c) fields relative to the average field in the
superconductor from global fits for applied fields of 1.9 T (circles, dotted curve), 4.1 T (triangles,
dashed curve), 4.7 T (upside-down triangles, dotted-dashed curve) and 6.5 T (squares, without
curve). See Table 7.3 for the parameters used in the curves.
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Applied Field (T) Minimum Field Cusp Field Maximum Field
19T c=—38.18+0.66 (Q) | ¢ = —31.91 £0.55 (Q) | ¢ = 220.6 £ 4.1 (G)
p=220+0.13 p=2.16+0.13 p = 1.471 £ 0.078
41T c= 35224090 (Q) | c= —29.35+£0.71 (G) | ¢ = 166.9 £ 4.9 (G)
p=197+0.12 p=1.85+0.10 p = 1.163 + 0.066
47T c=—3539+046 (G) | c = —29.39 £0.42 (G) | ¢ = 157.6 £ 5.2 (G)
p = 1.812 £0.055 p = 1.693 £ 0.056 p = 1.100 £ 0.076

Table 7.3: Fits to minimum, cusp and maximum fields in Fig. 7.13 using Bas, B¢ or
By =c¢(1—{T/T.}?). (Since the errors are underestimated for the maximum field, the errors for
the parameters ¢ and p are likely to be underestimated as well.)

is increased, with the strongest effect for By. The reduction is due to the term (1 —b) in Eq. 7.7

which represents the field dependence of the superconducting order parameter.

The errors in By, B¢e and Bjs have been estimated by adding in quadrature the errors for
B, and the width o of the Gaussian convolution. If the theoretical lineshape is too wide or too
narrow due to a poor choice of A2 or H,g, the fit will match the cusp and shoulder regions where
the amplitude is high and concentrate the mismatches in the tail region where the amplitude is
low. Therefore, good error estimates for Bj; and B¢ can be produced from the error estimates
for B, and o alone. The error in H.o and A~2 will affect By much more than Bjs and B¢. Since

the error in H.o was not taken into account, the error has been grossly underestimated for By .

The Meissner effect is not well determined by the uSR data. At 70-75 K, the average internal
field in the superconductor relative to the applied field (as determined by runs taken above T¢)
is about =1 G for 1.9 T, —2 G for 4.1 T, —3 G for 4.7 T and —2 G for 6.5 T. However, as the
temperature decreases, the average field in the superconductor increases approximately linearly,
which is not consistent with flux expulsion. Over the temperature range measured, the runs at
1.9 T are within £2 G of the applied field, the runs at 4.1 T are within +3 G and the runs
at 4.7 T are within +4 G. These results should not be taken too seriously; the average field is
strongly influenced by the maximum field at the vortex core and this is poorly determined at
the lower temperatures. Using pSR, it is impossible to determine the temperature dependence

of the average field with enough accuracy to distinguish the effects of the flux expulsion from
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other effects such as paramagnetism and muon Knight shifts. From magnetization measurements
(Sec. 4.9), the amount of flux expulsion for this 8 mm sample is predicted to be = 3.6 G in an

applied field of 1.9 T and =~ 10 G in 4.1 T, which is is too large to fit the uSR data with.

It is curious to note that above T, the uSR linewidth for our YBayCu30¢.95 mosaic (presumably
due to nuclear dipolar fields) and the bulk magnetization for a single crystal of that mosaic show
a very similar linear dependence on the applied field. Fig. 7.14 shows the root mean square field

inhomogeneity in Gauss above T in SR data at T' = 95-120 K, which fits well to
T >T,) =6,+SB, (7.13)

with a slope of § = (0.1798 + 0.0074) x 10~* and an offset of §, = 0.158 & 0.027 G. This field
dependent inhomogeneity was not observed in silver (which has no dipolar moments) so it is not

due to a spatial inhomogeneity of the magnet. The magnetization at 7' = 100 K fits well to
(B—H)=Hy+sH (7.14)

with a slope of S = (0.1936 4 0.0048) x 10~* and an offset of Hy = 0.011 4 .0.14 G.

7.6.5 Degree of Disorder in the FLL

The experimental lineshapes show appreciable “smearing” relative to the theoretical lineshapes.
To mimic the effects of the nuclear dipolar fields, the apodization in the Fourier transform and the
inherent disorder in the FLL, the theoretical lineshapes were convoluted with a Gaussian. Fig. 7.15
shows the convolution width (o) after correction for the nuclear dipolar fields (estimated from
above T.) and the apodization used in the Fourier transform. Note that o is about one half the
difference between the cusp field and the average field. The convolution also shows an exponent

~ 2 in its temperature dependence.

Fig. 7.16 shows an estimate of (s?)'/2/L, the square root of the mean square of the deviation
of each vortex from its ideal position in the FLL normalized by the distance L between vortices,
using the corrected convolution values, the average field B,, A™2 and H,y. In particular, both

random compression and random shear of the FLL should contribute to the smearing observed (see
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Figure 7.14: Local field inhomogeneity from nuclear dipole moments above 7., determined by
Gaussian fits to YBaoCuzQOg.95 at temperatures between 95 K and 120 K (circles). Triangles show
fits to silver at room temperature, which should show the magnet’s inhomogeneity alone since
there are no nuclear dipole moments in silver.
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Figure 7.15: The convolution width (o) in gauss from global fits, after correction for the Gaussian
apodization used in the Fourier transform and width of the nuclear dipolar field distribution as
measured above T, for fields of 1.9 T (circles), 4.1 T (triangles), 4.7 T (upside-down triangles)
and 6.5 T (squares). The dashed lines are fits to o = ¢(1 — {T/T.}?) with T, fixed to 93.5 K,
¢=13.66+0.37 G and p = 1.8440.13 for the 1.9 T data and ¢ = 15.68+0.44 G and p = 1.96+0.15
for the 4.7 T data.
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Figure 7.16: Calculated values of (s2)'/2/L, the square root of the mean square of the deviation of
each vortex from its ideal position in the FLL normalized by the distance L between vortices, due
to random compression (a) and random shear (b), for fields of 1.9 T (circles), 4.1 T (triangles),
4.7 T (upside-down triangles) and 6.5 T (squares). For random compression (a), the dashed line
shows ¢(1 — {T/T.}P) with T, fixed to 93.5 K, ¢ = 0.0559 &+ 0.0015 and p = 3.69 + 0.63 for the
1.9 T data. For random shear (b), the dashed lines show ¢(1 — {T'/T.}?) with T, fixed to 93.5 K,
c=(5.96+0.11) x 107 and p = 1.681 4 0.087 for the 1.9 T data and ¢ = (2.642 + 0.063) x 1075
and p = 2.02 + 0.17 for the 4.7 T data.
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Eqgs. 4.48 and 4.49), though random compression contributes much more in this experiment. This
suggests that a single Gaussian can be used to convolute the entire theory lineshape. So, when
estimating the degree of disorder in the FLL, only the (s2)!/2 /L estimated from the expression
for random compression will be used. From Fig. 7.16, the degree of disorder lies between about
5% and 6.5%. The highest values occur in runs with an applied field of 4.7 T, all of which have
a rather large background signal (see Fig. .13). This makes fitting more difficult and leads to an
artificially large convolution. In the narrowed lineshapes (those at the higher temperatures and
higher fields), the fits tend to misplace the cusp region because the cusp contains very few points
in the discrete FFT. This also leads to an artificially large convolution. One should trust the
results for 1.9 T, which show a slight reduction in (s2)!/2/L at larger temperatures, more than
those for higher fields, which show a slight reduction followed by a large increase with increasing
temperature. Other factors can contribute to the smearing, such as macroscopic field gradients
due to the interaction of flux expulsion with pinning and different geometric factors due to the
range of crystals sizes and shapes in the mosaic. Since we cannot separate the various causes of
smearing, the mean deviation of the vortices from their ideal positions in the FLL in the bulk of
YBayCu3Og.95 has an upper limit of 5.5% below 60 K and is nearly constant. Above 60 K, there

may be a small decrease in (s2)'/2/L with increasing temperature.

7.7 Discussion and Conclusions

The simplest yet perhaps most important result from the high field experiments is that the
Ginzburg-Landau parameter £ = /¢ is measured to be roughly constant with a value of 70+6 over
the majority of the temperature range for YBapsCusQOg 95. If we presume that the YBaoCusOg.95 is
a weak coupling s-wave superconductor, this result serves as a consistency check for the way that
the data was fit. If we don’t assume any particular pairing state, it demands that any theory for
the mechanism of superconductivity in YBayCu3Og. 95 must predict that x remains approximately

constant with temperature.

The value of 70+£6 is consistent with the average value of 72 found by Gohng and Finnemore|6]

using reversible magnetization. They found that they obtained better results when k varied from
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76.9 at 82 K to 67.5 at 88 K, but they provided no explanation of why. Probably, their measured
k is in fact ko which is defined by[102, p. 931]

aml 1
dM |g, 4m1.16(2k2 — 1)

(7.15)

Note that k2(T') becomes identical to x only at T.. The temperature dependence that Gohng
and Finnemore observe is roughly consistent with x2(7) for an isotropic s-wave weak coupling
BCS superconductor. In weak coupling BCS theory, x2(T") has a much stronger temperature
dependence than x(T) = X(T)/&(T) [102, p. 879, p. 871, p. 936]. Various combinations of s-, d-,
and p-wave pairing, impurity scattering, paramagnetic contributions, and the degree of strong
coupling can produce a vast array of behavior in \(T'), Heo(T), £(T) and x(T), much of which
is not yet calculated. Moreover, the degree of accuracy in the results presented here offer little

possibility of distinguishing between a constant x and a weakly varying (7).

Since uSR experiments measure the field distribution in static fields, pinning shows up in
the lineshape only as a source of “smearing”. This means that properties such as the Ginzburg-
Landau parameter x can be observed in the uSR lineshape even below T}y, the temperature at
which pinning sets in. The disorder in the FLL introduced by the pinning increases the error
in the determination of k. In contrast, measurements of reversible magnetization M (H) (see
Eqgs. 4.51 and 4.57) can only be performed above Ti. I believe that the uSR results presented
here represent the best measurements to date of k, £(T") and H.o(T) in YBayCu3Og.95 over the

majority of the temperature range.

An important point which has not been duly emphasized in this thesis is that the modified
London model uses &(T') rather than H.o(T) to determine the pSR lineshape. In Eq. 7.7, ¢
represents the radius of the vortex core and the reduced field b approximates the suppression
of the superconducting order parameter due to the density of the cores. Hgy is inferred from ¢
strictly for the convenience of the fitting program. If Eq. 7.1 does not hold exactly, as may be

the case for theories other than weak coupling BCS, then it is more appropriate to express b as
47
V3

model-independent whether or not H.(T) is strictly proportional to £72(T).

b= &2 (Eq. 7.10) rather than b = B,/H(T). However, the results for x = \/& should be
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Can the pairing state be determined by the temperature dependence of either A or £7 Since
SR data is more sensitive to A than & and theoretical calculations of A(T") are more readily
available than &(T'), our results for ¢ are not worth examining further at this time. With the
data for the temperature dependence of H.y o< £ 2 (see Fig. 7.10), the weak coupling s-wave BCS
results for a spherical Fermi surface cannot even be distinguished from those for a cylindrical

Fermi surface.

The A(T') results are more detailed. For high fields (1.9 T to 6.5 T), a fit to a power law

AP (T) TP
,\53(0) =1- {?} (7.16)

gives p = 2.89 £0.23 assuming 7. = 93.5 K. (Introducing the uncertainty in 7, would increase the
reported error for p.) The features of the lineshape (such as the minimum, cusp and maximum
fields) have a lower order temperature dependence (p < 2.89) due to the influence of the field
dependence of the order parameter [the term (1 — b) in Eq. 7.7]. Because the degree of disorder
(Fig. 7.16) appears to decrease near T, while staying relatively constant at lower temperatures,
the temperature dependence of the convolution should have a lower exponent than that for the
minimum and cusp fields. For example, at 1.9 T the convolution has an exponent p = 1.84 + 013
while the minimum field has p = 2.204-0.13 and the cusp field has p = 2.16+0.13. The temperature
dependence of o(T') in high fields suggests that in the intermediate field regime, where we could
not measure o(7") easily due to low statistics, the temperature dependence of the disorder will
cause the exponent p in Eq. 7.16 to be underestimated because the measured quantity, the cusp
field, is determined by both A and the size of the convolution. Furthermore, for data taken at
0.25 T, p = 2.61 + 0.13 when the flux expulsion was allowed to vary (cg = —3.68 + 0.64 G) but
p = 3.144+0.14 when the flux expulsion was fixed to the value —0.65 G predicted by magnetization
measurements on a crystal from the mosaic. Obviously, the cusp field results suffer from errors
in the size and temperature dependence of the flux expulsion. If the free fit is appropriate,
the above arguments explain why the power found in the cusp frequency in a moderate field is
smaller than that for the magnetic penetration depth as measured from the lineshape in high
fields. Clearly, caution on many fronts is in order when attempting to accurately measure the

temperature dependence of the magnetic penetration depth.
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The features of the observed uSR lineshape are not as sharp as those calculated for theoretical
lineshapes with perfect FLLs. From consideration of the smearing seen in the experimental data,
we concluded that the root-mean-square deviation of the vortices from their ideal positions in
the FLL ((s?)'/2/L) is < 5.5% (Sec. 7.6.5). The careful oxygen annealing of the high quality
crystals used in these experiment makes it unlikely that any of the observed smearing is due to an
inhomogeneous distribution of penetration depths. For the high field data, the superconducting
solenoid forming the Helios magnet is spatially quite homogeneous. Drifts in Helios were corrected
for using a trim coil regulated by an NMR magnetic field probe to keep the applied field constant
(see the silver signal in Fig. 7.14). The distribution of demagnetizing factors for the crystals in the
mosaic (see Sec. 4.9) may contribute to the smearing, although the crystals were pieced together
tightly to minimize this problem. Measurements of smearing in a single crystal of YBayCuzOg.95,°
which show less smearing than those in a mosaic, demonstrate (from preliminary fits) only a 30%
smaller value for (s?)1/2/L. In light of this, the majority of the smearing present (> 70%) arises
from microscopic disorder of the FLL due to pinning of individual vortices, and perhaps as much

as 30% is due to the distribution of demagnetizing factors.

If single crystals are more pure than thin films, it may be that the T2 temperature depen-
dence found for thin films at low temperatures[95] is brought about by the impurities.[11, 96] As
discussed in Ch. 6, the number of points measured are too few and the scatter is too large in
the low temperature region of the intermediate and high field uSR data to be able to determine
the pairing state of YBayCu3Og.95. The overall temperature dependence (from zero to T) is also
strongly affected by impurity levels, the degree of strong coupling, anisotropy, nodes in the gap,
etc.,[109, 11] which makes the assignment of the pairing state still more difficult. For example,
Prohammer and Carbotte have calculated H.o(7')[110] and A(7)[109] for s-wave superconductiv-
ity and two likely models of d-wave superconductivity in both the weak and strong limits. The
d-wave model with k2 — l%; symmetry, which is favored by many theorists (see Ref. [23] and ref-
erences therein), predicts an H.o(7') which looks promising, but the temperature dependence of

the penetration depth is linear over too large a range to fit the present uSR data.

$Performed by Robert Kiefl et al. at TRIUMF in December of 1992.
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Bulut and Scalapino[23] used a weak coupling model on a metal with antiferromagnetic spin
fluctuations to test s-wave and d-wave superconductivity against NMR results for the copper and
oxygen Knight shifts and 77 nuclear relaxation rates. They found that s-wave superconductivity

fits the Knight shifts better while d-wave superconductivity fits the relaxation rates better.

Qualitatively, a gap anisotropy in an s-wave model won’t affect A(T") in the low temperature
limit, but it will change the overall temperature dependence, probably by reducing the range of
temperatures over which A\(T") has an exponential temperature dependence. It is possible that our
results for Ay (7T) are consistent with s-wave superconductivity with a large gap anisotropy in the
a-b plane and some strong coupling. This might produce the observed power law dependence—an
exponent greater than that for weak coupling BCS and no clear plateau. However, the low tem-
perature dependence is more important than the dependence over the whole temperature range,
in which case the high field data does not contain enough different temperatures to determine
the pairing state. The intermediate field data taken at 2.5 kG in Chapter 6 suggests a linear

dependence, which would be reflective of d-wave superconductivity.



Chapter 8

Conclusions

In summary, the uSR lineshape is determined by both the penetration depth A and the coherence
length ¢ in fields high enough that A > L > ¢. For a single experimental run at a given
temperature and field, X and ¢ (or alternatively A\=2 and Hy) cannot both be uniquely determined
because nearly identical lineshapes are produced for a range of coupled values of A and £&. One
would prefer to assume the value of ¢ or H.o from other experiments because X affects the lineshape
more strongly than do & or H., but estimates of £(7') from measurements of H(T') are very
rough, except perhaps near T,. Fortunately, values for both A=2 and H.y in YBayCuszOg.95
were found by simultaneously fitting runs with different applied fields for each temperature. In

moderate fields (A 2 L > £), the lineshape is mostly independent of £ and H.o.

Extensive measurements of the uSR lineshape in a mosaic of YBayCu3Og.95 single crystals
were made in high fields (1.9T, 4.1 T, 4.7T and 6.5T) parallel to the mosaic’s ¢ axis. While
the detailed temperature dependence of ¢ and H.o remains uncertain at low temperatures, their
values are Hy)z(10 K) =~ 90 T and £4(10 K) ~ 0.0019 um. The temperature dependence of X in

the a-b plane, which is better determined by the uSR measurements, was found to follow
Ay (T) /A5 (0) = 1 —{T/Te}?

with an exponent p = 2.89 £ 0.23 over the temperature range 10 K to 75 K. The features in
the lineshape (such as the cusp field) have a weaker temperature dependence for higher fields
with correspondingly smaller exponents than that for the penetration depth when fit to a similar
expression (Eq. 6.3). The weaker temperature dependence is due to the influence of the coherence
length, the field dependence of superconducting order parameter [proportional to 1—B/H2(t)] and

the temperature dependence of the disorder in the FLL. This means that fits to the London model,

196
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which ignores the coherence length, must not be used to determine temperature dependence of
the magnetic penetration depth in high fields. The Ginzburg-Landau parameter x = A\/{ was
found to be independent of temperature between 30 K and 75K and to have a value of 70 + 6.

This is the first measurement to date of k¥ in YBasCu3Og 95 for this temperature range.

Any proposed pairing state for the superconductor YBayCu3Og.95 must be consistent with
the temperature-independent x found here. The exact temperature dependence of Ay, at low
temperatures was not determined with enough accuracy (either at moderate or high fields) to
support or rule out specific pairing states. The fact that the overall temperature dependence has
an exponent p = 2.9 is important, because this contradicts the higher exponents (p ~ 3.5) found
in sintered powders of YBayCusQOg.95, which often seem to be nearly consistent with the Gorter-
Casimir two-fluid model—a power law with the exponent fixed to 4. The temperature dependence
of Ay over all temperature in our YBagCusOg.95 mosaic is not much stronger than weak coupling
BCS (roughly equivalent to a power law with exponent p = 2.22), so the penetration depth
could possibly be consistent with an s-wave superconductor with strong coupling (which would
increase p) and some anisotropy in the gap [thereby reducing the region over which Ay, (7'20) has
a plateau]. However, in fields of 2.5 kG where more temperatures were measured, there appears to
be a linear temperature dependence below 25 K, which would support d-wave superconductivity.
Very recent experiments using accurate microwave measurements[97, 98] and high statistics uSR

measurements in a single crystal of YBagCu30¢.95[99] confirm the linear temperature dependence.

The quality of the SR lineshapes at high fields should provide sufficient evidence against the
argument that “junk” effects such as impurities within the sample which cause pair-breaking or
inclusions of magnetic impurity phases (which introduces extra relaxation at low temperatures
with a Curie law temperature dependence) are artificially modifying the temperature dependence
of Ay in these crystals compared to that inferred from unoriented sintered powders. It is much
more difficult to extract unambiguous information from unoriented sintered powders than from
single crystals since the lineshapes they produce are powder-averaged over A(6) and £(6) [or
alternatively A\=2(0) and H9(8)], although ignoring the angular dependence of H,o and assuming a,

temperature-independent penetration depth anisotropy makes it possible to estimate the magnetic
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penetration depth in the a-b plane from unoriented samples.[111, 81, 53, 77, 76, 27] It is possible
that the anisotropy (I" = A;/Agp) itself is temperature dependent; theoretical calculations for a
Josephson-junction layered superconductor indicate this possibility.[101] Moreover, morphology
effects such as weak links, porosity, crystallite size, and angular-dependent pinning effects may
affect the temperature dependence of the measured lineshape. The values determined for A4;(10 K)
from powders are certainly consistent with those found here in single crystals, reflecting the small
error occurring in \ arising from a relatively large error occurring in linewidth (AB oc A™72).
Overall, the additional complications of powder averaging makes sintered powder samples less

reliable than single crystals for the measurement of Ay (7).

As measured by the high field data, the magnetic penetration depth in the a-b plane of
YBayCuz0¢.95 is 0.1491 £ 0.0017 pm at 10 K. As measured in medium fields (0.25 T) at a temper-
ature of 10K, X is between 0.1405 ym and 0.1352 ym depending on the amount of flux expulsion
assumed. In low fields (an applied field of 100 G), fitting to a simple Gaussian gave an anisotropy
' = A./Aqp of about 5 and a penetration depth between 0.1380 ym and 0.1510 gm; we could be
more certain if we knew the degree of flux expulsion and if we had a complete theory of low field
FLL geometries in the presence of pinning. Fits to data taken in 100 G when B | é (i-e., @ =0),
gave Agp = 0.1270 £ 0.0012 pm at T = 10 K. Combining all of these measurements, it appears
that Ay (10 K) is approximately 0.1390 ym with the generous error of 0.0120 gm. On the other
hand, the most thorough analysis was performed on the high field data, which suggests that the

true value of the penetration depth at 10K is closer to 0.1490 £ 0.0120 pm.

Pinning-induced disorder in the FLL causes a Gaussian broadening of the theoretical lineshape.
With the applied field parallel to the ¢ axis of YBayCuzQg.95, we observe values for the width of
the Gaussian broadening ranging between 12 G at an applied field of 100G, 18 G at 0.25T, 13.5 G
at 1.9T and 4.1T and 15.5G at 4.7T. At the intermediate field (A > L > £) of 0.25 T, both
the lineshape and the Gaussian broadening are at their widest. The 12 G broadening observed
at 100G corresponds to rms disorder in the FLL given by (s?)/2/L ~ 4%, though this value
may be underestimated since the penetration depth appears to be underestimated. In high fields

(B, > 1 T), the broadening corresponds to rms disorder between 5.5% and 6.5%, with the lower



199

value being more reliable since the convolution was overestimated slightly for the 4.7 T field due
to interference from a large background signal. In any case, the values for disorder should be
considered as upper bounds since a distribution of demagnetization factors for the crystals in
the mosaic may contribute as much as 30% to the smearing. It is important to remember that
#SR is only sensitive to variation in the local field, such as that caused by nearest neighbor
disorder in the FLL. Therefore, with uSR, the measured mean deviation of vortices from their
ideal positions in the FLL cannot distinguish between disorder which maintains some amount of
long range hexagonal order and that which allows slow rotations and undulations of the FLL’s
unit cell vectors.[75] Unfortunately, the degree of disorder present in our experiments (along with
the background signal) was large enough to mask any expected details in the lineshape at low
fields, such as a splitting in the cusp field, which may have indicated the presence of chains of

vortices in the FLL.
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Preferred Rotating Reference Frame Frequencies

Vo VRRF At # per osc.
18 16 0.062500 = 1 /16 = 200 x 0.0003125 8.00
22 20 | 0.050000= 1 /20 = 160 x 0.0003125 10.00
27 25 0.040000 = 1 /25 = 128 x 0.0003125 12.50
34 32 0.031250 = 1 /32 = 100 x 0.0003125 16.00
42 40 10.025000 = 1 /40 = 80 x 0.0003125 20.00
50 48 0.062500 = 3 /48 = 200 x 0.0003125 8.00
52 50 0.020000= 1 /50 = 64 x 0.0003125 25.00
62 60 |0.050000= 3 /60 = 160 x 0.0003125 10.00
66 64 |0.015625 = 1 /64 = 50 x 0.0003125 32.00
7 75 0.040000 = 3 /75 = 128 x 0.0003125 12.50
82 80 |0.012500= 1 /80 = 40 x 0.0003125 40.00
98 96 0.031250 = 3 /96 = 100 x 0.0003125 16.00
102 100 | 0.010000 = 1 /100 = 32 x 0.0003125 50.00
114 112 | 0.062500 = 7 /112 = 200 x 0.0003125 8.00
122 120 | 0.025000 = 3 /120 = 80 x 0.0003125 20.00
127 125 | 0.040000 = 5 /125 = 128 x 0.0003125 12.50
130 128 | 0.007813 = 1 /128 = 25 x 0.0003125 64.00
142 140 | 0.050000 = 7 /140 = 160 x 0.0003125 10.00
146 144 | 0.062500 = 9 /144 = 200 x 0.0003125 8.00
152 150 | 0.020000 = 3 /150 = 64 x 0.0003125 25.00
162 160 | 0.006250 = 1 /160 = 20 x 0.0003125 80.00
177 175 | 0.040000 = 7 /175 = 128 x 0.0003125 12.50
178 176 | 0.062500 = 11 /176 = 200 x 0.0003125 8.00
182 180 | 0.050000 = 9 /180 = 160 x 0.0003125 10.00
194 192 | 0.015625 = 3 /192 = 50 x 0.0003125 32.00

Table .1: Preferred RRF frequencies for the case of the data’s frequency 2 MHz greater than the
RRF frequency. Used criterion that the RRF time bin size d¢ be less that 0.07 us.

209



210 . PREFERRED ROTATING REFERENCE FRAME FREQUENCIES

Vo VRRF 0t # per osc.
202 200 [ 0.005000 = 1 /200 = 16 x 0.0003125 100.00
210 208 | 0.062500 = 13 /208 = 200 x 0.0003125 8.00
222 220 | 0.050000 = 11 /220 = 160 x 0.0003125 10.00
226 224 | 0.031250 = 7 /224 = 100 x 0.0003125 16.00
227 225 | 0.040000 = 9 /225 = 128 x 0.0003125 12.50
242 240 |0.012500 = 3 /240 = 40 x 0.0003125 40.00
252 250 | 0.020000 = 5 /250 = 64 x 0.0003125 25.00
258 256 | 0.007813 = 2 /256 = 25 x 0.0003125 64.00
262 260 | 0.050000 = 13 /260 = 160 x 0.0003125 10.00
274 272 | 0.062500 = 17 /272 = 200 x 0.0003125 8.00
277 275 | 0.040000 = 11 /275 = 128 x 0.0003125 12.50
282 280 | 0.025000 = 7 /280 = 80 x 0.0003125 20.00
290 288 | 0.031250 = 9 /288 = 100 x 0.0003125 16.00
302 300 | 0.010000= 3 /300 = 32 x  0.0003125 50.00
306 304 | 0.062500 = 19 /304 = 200 x 0.0003125 8.00
322 320 | 0.003125 = 1 /320 = 10 x 0.0003125 160.00
327 325 | 0.040000 = 13 /325 = 128 x 0.0003125 12.50
338 336 | 0.062500 = 21 /336 = 200 x 0.0003125 8.00
342 340 | 0.050000 = 17 /340 = 160 x 0.0003125 10.00
352 350 | 0.020000 = 7 /350 = 64 x 0.0003125 25.00
354 352 |0.031250 = 11 /352 = 100 x 0.0003125 16.00
362 360 | 0.025000 = 9 /360 = 80 x 0.0003125 20.00
370 368 | 0.062500 = 23 /368 = 200 x 0.0003125 8.00
377 375 |0.040000 = 15 /375 = 128 x 0.0003125 12.50
382 380 | 0.050000 = 19 /380 = 160 x 0.0003125 10.00
386 384 | 0.007813 = 3 /38 = 25 x 0.0003125 64.00
402 400 | 0.002500 = 1 /400 = 8 x 0.0003125 200.00
418 416 | 0.031250 = 13 /416 = 100 x 0.0003125 16.00
422 420 | 0.050000 = 21 /420 = 160 x 0.0003125 10.00
427 425 | 0.040000 = 17 /425 = 128 x 0.0003125 12.50
434 432 | 0.062500 = 27 /432 = 200 x 0.0003125 8.00
442 440 | 0.025000 = 11 /440 = 80 x 0.0003125 20.00
450 448 | 0.015625 = 7T /448 = 50 x  0.0003125 32.00
452 450 | 0.020000 = 9 /450 = 64 x 0.0003125 25.00
462 460 | 0.050000 = 23 /460 = 160 x 0.0003125 10.00
466 464 | 0.062500 = 29 /464 = 200 x 0.0003125 8.00
477 475 | 0.040000 = 19 /475 = 128 x 0.0003125 12.50
482 480 | 0.006250 = 3 /480 = 20 x  0.0003125 80.00
498 496 | 0.062500 = 31 /496 = 200 x 0.0003125 8.00




Vo _VRRF 0t # per osc.
502 500 | 0.010000 = 5 /500 = 32 x 0.0003125 50.00
514 512 | 0.007813 = 4 /512 = 25 x 0.0003125 64.00
522 520 | 0.025000 = 13 /520 = 80 x 0.0003125 20.00
527 525 | 0.040000 = 21 /525 = 128 x 0.0003125 12.50
530 528 | 0.062500 = 33 528 = 200 x 0.0003125 8.00
542 540 | 0.050000 = 27 /540 = 160 x 0.0003125 10.00
546 544 | 0.031250 = 17 /544 = 100 x 0.0003125 16.00
552 550 | 0.020000 = 11 /550 = 64 x 0.0003125 25.00
562 560 | 0.012500 = 7 /560 = 40 x 0.0003125 40.00
577 575 | 0.040000 = 23 /575 = 128 x 0.0003125 12.50
578 576 | 0.015625 = 9 /576 = 50 x 0.0003125 32.00
582 580 | 0.050000 = 29 580 = 160 x 0.0003125 10.00
594 592 | 0.062500 = 37 /592 = 200 x 0.0003125 8.00
602 600 | 0.005000 = 3 /600 = 16 x 0.0003125 100.00
610 608 | 0.031250 = 19 /608 = 100 x 0.0003125 16.00
622 620 | 0.050000 = 31 /620 = 160 x 0.0003125 10.00
626 624 | 0.062500 = 39 /624 = 200 x 0.0003125 8.00
627 625 | 0.040000 = 25 /625 = 128 x 0.0003125 12.50
642 640 | 0.001563 = 1 /640 = 5 x 0.0003125 320.00
652 650 | 0.020000 = 13 /650 = 64 x 0.0003125 25.00
658 656 | 0.062500 = 41 /656 = 200 x 0.0003125 8.00
662 660 | 0.050000 = 33 /660 = 160 x 0.0003125 10.00
674 672 | 0.031250 = 21 672 = 100 x 0.0003125 16.00
677 675 | 0.040000 = 27 675 = 128 x 0.0003125 12.50
682 680 | 0.025000 = 17 /680 = 80 x 0.0003125 20.00
690 688 | 0.062500 = 43 688 = 200 x 0.0003125 8.00
702 700 | 0.010000 = 7T /700 = 32 x  0.0003125 50.00
706 704 | 0.015625 = 11 /704 = 50 x 0.0003125 32.00
722 720 | 0.012500 = 9 /720 = 40 x 0.0003125 40.00
727 725 | 0.040000 = 29 /725 = 128 x 0.0003125 12.50
738 736 | 0.031250 = 23 736 = 100 x 0.0003125 16.00
742 740 | 0.050000 = 37 /740 = 160 x 0.0003125 10.00
752 750 | 0.020000 = 15 750 = 64 x 0.0003125 25.00
754 752 | 0.062500 = 47 /752 = 200 x 0.0003125 8.00
762 760 | 0.025000 = 19 /760 = 80 x 0.0003125 20.00
770 768 | 0.007813 = 6 /768 = 25 x  0.0003125 64.00
T 775 ] 0.040000 = 31 /775 = 128 x 0.0003125 12.50
782 780 | 0.050000 = 39 /780 = 160 x 0.0003125 10.00
786 784 ]0.062500 = 49 /784 = 200 x 0.0003125 8.00
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212 . PREFERRED ROTATING REFERENCE FRAME FREQUENCIES

Vo  VRRF 0t # per osc.
802 800 [0.001250 = 1 /800 = 4 x 0.0003125 400.00
818 816 | 0.062500 = 51 /816 = 200 x 0.0003125 8.00
822 820 | 0.050000 = 41 /820 = 160 x 0.0003125 10.00
827 825 | 0.040000 = 33 /825 = 128 x 0.0003125 12.50
834 832 | 0.015625 = 13 /832 = 50 x 0.0003125 32.00
842 840 | 0.025000 = 21 /840 = 80 x 0.0003125 20.00
850 848 | 0.062500 = 53 /848 = 200 x 0.0003125 8.00
852 850 | 0.020000 = 17 /850 = 64 x 0.0003125 25.00
862 860 | 0.050000 = 43 /860 = 160 x 0.0003125 10.00
866 864 | 0.031250 = 27 /864 = 100 x 0.0003125 16.00
877 875 | 0.040000 = 35 /875 = 128 x 0.0003125 12.50
882 880 | 0.012500 = 11 /880 = 40 x 0.0003125 40.00
898 896 |0.007813 = 7 /8% = 25 x 0.0003125 64.00
902 900 | 0.010000= 9 /900 = 32 x 0.0003125 50.00
914 912 | 0.062500 = 57 /912 = 200 x 0.0003125 8.00
922 920 | 0.025000 = 23 /920 = 80 x 0.0003125 20.00
927 925 | 0.040000 = 37 /925 = 128 x 0.0003125 12.50
930 928 | 0.031250 = 29 /928 = 100 x 0.0003125 16.00
942 940 | 0.050000 = 47 /940 = 160 x 0.0003125 10.00
946 944 | 0.062500 = 59 /944 = 200 x 0.0003125 8.00
952 950 | 0.020000 = 19 /950 = 64 x 0.0003125 25.00
962 960 |0.003125 = 3 /960 = 10 x 0.0003125 160.00
977 975 |0.040000 = 39 /975 = 128 x 0.0003125 12.50
978 976 | 0.062500 = 61 /976 = 200 x 0.0003125 8.00
982 980 | 0.050000 = 49 /980 = 160 x 0.0003125 10.00
994 992 |0.031250 = 31 /992 = 100 x 0.0003125 16.00
1002 1000 | 0.005000 = 5 /1000 = 16 x 0.0003125 100.00




High Field x? Scans and Lineshapes
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214 . HIGH FIELD x? SCANS AND LINESHAPES

Run # # of Events (x10%) Temp. (K) | B, (T) Bgk (T)

“10 K” 45 5.43 10.10(7) | 1.903046  1.90334
31 14.36 10.25(5) | 4.07874  4.07879
70 13.31 9.9(1) | 473702 4737
“90 K” 76 2.26 20.17(5) | 1.903396 1.903762
30 2.237 19.84(5) | 4.07852  4.07881
69 3.47 19.90(5) | 4.73718  4.73702
“30 K” 75 7.68 30.00(5) | 1.903528 1.903743
29 14.67 30.17(5) | 4.07866  4.07885
68 1.40 30.1(3) | 4.73704  4.73703
“40 K” 74 2.09 40.20(6) | 1.903306 1.903747
33 3.77 40.27(5) | 4.07837  4.07881
67 3.22 40.13(10) | 4.73663  4.73702
55 418 41.25(10) | 6.50706  6.50775
“50 K” 44 2.76 50.10(5) | 1.903164 1.903352
28 16.14 50.04(5) | 4.07875  4.07885
66 11.55 50.0(5) | 4.73688  4.73704
54 21.13 48.9(3) | 6.50727  6.50774
“60 K” 73 3.48 60.50(5) | 1.903401  1.90377
27 5.79 60.02(5) | 4.07827  4.07886
65 4.52 58.9(5) | 4.73652  4.73709
“70 K” 43 6.662 70.52(10) | 1.903143  1.9034
57 8.24 70.5(9) | 4.07876  4.07927
64 13.50 70.2(1.1) | 4.73661  4.73708
53 19.96 70.3(4) | 6.50699  6.50804
“75 K7 72 2.31 74.88(6) | 1.90332  1.90379
34 3.71 75.0(5) | 4.07831  4.07904
62 3.13 747(5) | 4.73641  4.73713
“T>T” | 20 2.98 100(2) | 4.07877
58 3.45 102.0(4) | 4.73677
50 4.79 101.5(5) | 6.50721
38 2.28 119.15(3) | 1.903254
37 4.04 119(1) | 4.07855

Table .1: This table shows the temperature, number of events and the applied field for each high
field run. The groups of runs below 7, were fitted together with shared A=2 and H,,.
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T=10K UBC YBa,Cu,0,,, Crystals. Scan A and Hc2. Field x2
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Figure .1: This figure displays the goodness of fit (x?) as a function of A\~2 and H.s for individual
runs at T = 10 K with fields of 1.9 T, 4.1 T and 4.7 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x?2, + 1, the stars mark x? < x2, + 2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x? up to x2, + 10. The curve
marked “R” is a contour of those fits which have the same average field (B,) as the best fit for
the run. (Relative to the background field, B, is —2.75 G for 1.9 T, 2.03 G for 4.1 T and 0.94 G
for 4.7 T.) The curve marked “T” is the contour of those fits which have the same average field
(B,) as the best global fit (see figure .9) for the 10 K runs. (B, is —2.94 G for 1.9 T, —0.59 G for
4.1 T and 0.23 G for 4.7 T.)



216 . HIGH FIELD x? SCANS AND LINESHAPES

T=20K UBC YBa,Cu,0., Crystals. Scan A and Hc2. Field X2
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Figure .2: This figure displays the goodness of fit (x?) as a function of A=2 and H,s for individual
runs at T = 20 K with fields of 1.9 T, 4.1 T and 4.7 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x2, + 1, the stars mark x? < x2, +2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x% up to x2, + 10. Due to
the low statistics of these runs, the average field contours are not informative. (Relative to the
background field, the average field of the best fit is —2.75 G for 1.9 T, 2.03 G for 4.1 T and 0.94
G for 4.7 T. The average field of the best global fit (see figure .9) for the 20 K runs is —2.94 G
for 1.9 T, —0.59 G for 4.1 T and 0.23 G for 4.7 T.)
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T=30K UBC YBa,Cu,0,,.. Crystals. Scan A and Hc2. Field x>
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Figure .3: This figure displays the goodness of fit (x?) as a function of A\~2 and H, for individual
runs at T = 30 K with fields of 1.9 T, 4.1 T and 4.7 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x?2, + 1, the stars mark x? < x2, + 2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x? up to x2, + 10. The curve
marked “R” is a contour of those fits which have the same average field (B,) as the best fit for
the run. (Relative to the background field, B, is —5.87 G for 1.9 T, —1.93 G for 4.1 T and —3.04
G for 4.7 T.) The curve marked “T” is the contour of those fits which have the same average field
(B,) as the best global fit (see figure .9) for the 30 K runs. (B, is —2.16 G for 1.9 T, —1.93 G for
4.1 T and 0.18 G for 4.7 T.)



218 . HIGH FIELD x? SCANS AND LINESHAPES

T=40K UBC YBa,Cu,0,.. Crystals. Scan A and Hc2. Field x?
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Figure .4: This figure displays the goodness of fit (x?) as a function of A\~2 and H.s for individual
runs at T =40 K with fieldsof 1.9 T, 4.1 T, 4.7 T and 6.5 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x?2, + 1, the stars mark x? < x2, + 2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x? up to x2, + 10. The curve
marked “R” is a contour of those fits which have the same average field (B,) as the best fit for
the run. (Relative to the background field, B, is —5.27 G for 1.9 T, —0.77 G for 4.1 T, 1.37 G
for 4.7 T and —4.49 G for 6.5 T.) The curve marked “T” is the contour of those fits which have
the same average field (B,) as the best global fit (see figure .9) for the 40 K runs. (B, is —4.42
Gfor1.9 T, —4.40 G for 4.1 T, —3.91 G for 4.7 T and —6.86 G for 6.5 T.)
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T=50K UBC YBa,Cu,0,,.. Crystals. Scan A and Hc2. Field x>
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Figure .5: This figure displays the goodness of fit (x?) as a function of A\~2 and H.s for individual
runs at T = 50 K with fieldsof 1.9 T, 4.1 T, 4.7 T and 6.5 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x?2, + 1, the stars mark x? < x2, + 2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x? up to x2, + 10. The curve
marked “R” is a contour of those fits which have the same average field (B,) as the best fit for
the run. (Relative to the background field, B, is —4.15 G for 1.9 T, —1.23 G for 4.1 T, —0.46 G
for 4.7 T and —1.87 G for 6.5 T.) The curve marked “T” is the contour of those fits which have
the same average field (B,) as the best global fit (see figure .10) for the 50 K runs. (B, is —1.88
Gfor1.9T, —0.95 G for 4.1 T, —1.62 G for 4.7 T and —4.72 G for 6.5 T.)
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T=60K UBC YBa,Cu
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Figure .6: This figure displays the goodness of fit (x?) as a function of A\~2 and H.s for individual
runs at T = 60 K with fields of 1.9 T, 4.1 T and 4.7 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x?2, + 1, the stars mark x? < x2, + 2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x? up to x2, + 10. The curve
marked “R” is a contour of those fits which have the same average field (B,) as the best fit for
the run. (Relative to the background field, B, is —5.03 G for 1.9 T, —5.23 G for 4.1 T and —4.59
G for 4.7 T.) The curve marked “T” is the contour of those fits which have the same average field
(B,) as the best global fit (see figure .10) for the 60 K runs. (B, is —3.688 G for 1.9 T, —5,85 G

for 4.1 T and —5.64 G for 4.7 T.)
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T=70K UBC YBa,Cu0,.. Crystals. Scan A and Hc2. Field x?2
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Figure .7: This figure displays the goodness of fit (x?) as a function of A\~2 and H.s for individual
runs at T = 70 K with fields of 1.9 T, 4.1 T, 4.7 T and 6.5 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x?2, + 1, the stars mark x? < x2, + 2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x? up to x2, + 10. The curve
marked “R” is a contour of those fits which have the same average field (B,) as the best fit for
the run. (Relative to the background field, B, is —4.07 G for 1.9 T, —5.34 G for 4.1 T, —4.91 G
for 4.7 T and —9.97 G for 6.5 T.) The curve marked “T” is the contour of those fits which have
the same average field (B,) as the best global fit (see figure .10) for the 70 K runs. (B, is —2.57
G for 1.9 T, —5.09 G for 4.1 T, —4.72 G for 4.7 T and —10.47 G for 6.5 T.)
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T=75K UBC YBa,Cu,0., Crystals. Scan A and Hc2. Field X2

29.5 I B AT SR A AT SR ST U SRR T R T 29.5 ...I.I...I...I...
1 B = 19T [ : : = 47T[
26.9 - L 26.94 -
& 24.3- [ & 24.3- N
£ ; L £ ; .
A 3] -
:< 21.7-_ _—:< 21.7-_ -
19.1- N 19.1—: —
TN A— 16.5 e
17.5 265 355 445 535 62.5 175 26.5 355 445 535 62.5
He2 (T) He2 (T)
29.5 |||||||||||||||||||
26.9 N
§ 243 N
E L
3 L
Y 217 -
< K
19.1- N
16.5 r\-
17.5 26.5 355 445 535 62.5
He2 (T) 0.25in

Figure .8: This figure displays the goodness of fit (x?) as a function of A=2 and H, for individual
runs at T = 75 K with fields of 1.9 T, 4.1 T and 4.7 T. The solid square marks the minimum
(x2,), the solid diamonds mark x? < x2, + 1, the stars mark x? < x2, +2 and the open diamonds
mark x? < x2, + 3. The smaller boxes represent higher values of x? up to x2, + 10. The curve
marked “R” is a contour of those fits which have the same average field (B,) as the best fit for
the run. (Relative to the background field, B, is —4.94 G for 1.9 T, —6.67 G for 4.1 T and —5.73
G for 4.7 T.) The curve marked “T” is the contour of those fits which have the same average field
(B,) as the best global fit (see figure .10) for the 75 K runs. (B, is —4.69 G for 1.9 T, —7.33 G
for 4.1 T and —7.21 G for 4.7 T.)
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Figure .9: This figure displays the total goodness of fit (X%) as a function of the fixed parameters
A"2 and H, resulting from simultaneous MINUIT fits (a.k.a. global fits) of the runs at fields of
1.9 T, 41T, 4.7 T and 6.5 T. The solid square marks the minimum (XQT,m), the solid diamonds

mark y? < XQT,m + 1, the stars mark x? < X2T,m + 2 and the open diamonds mark x? < X%,m + 3.
The smaller boxes represent higher values of x? up to X%,m + 10.
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Figure .10: This figure displays the total goodness of fit (X%) as a function of the fixed parameters
A"2 and H, resulting from simultaneous MINUIT fits (a.k.a. global fits) of the runs at fields of
1.9 T, 41T, 4.7 T and 6.5 T. The solid square marks the minimum (XQT,m), the solid diamonds
mark y? < XQT,m + 1, the stars mark x? < X2T,m + 2 and the open diamonds mark x? < X%,m + 3.
The smaller boxes represent higher values of x2 up to X%,m + 10.
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Figure .11: High Field uSR lineshapes and fits to the Modified London Model, for data at a field
of B =1.9 T. The lineshapes have been plotted relative to the background field in Gauss (1 G =
10~* T), with an arbitrary vertical offset.
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Figure .12: High Field uSR lineshapes and fits to the Modified London Model, for data at a field
of B = 4.1 T. The lineshapes have been plotted relative to the background field in Gauss (1 G =
10~* T), with an arbitrary vertical offset.
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Figure .13: High Field uSR lineshapes and fits to the Modified London Model, for data at a field
of B = 4.7 T. The lineshapes have been plotted relative to the background field in Gauss (1 G =
10~* T), with an arbitrary vertical offset.
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Figure .14: High Field SR lineshapes and fits to the Modified London Model, for data at a field
of B = 6.5 T. The lineshapes have been plotted relative to the background field in Gauss (1 G =
10~* T), with an arbitrary vertical offset.
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Figure .15: High Field pSR lineshapes and fits to the Modified London Model, for data at a
temperature of 10 K. The lineshapes have been plotted relative to the background field in Gauss
(1 G = 10~* T), with an arbitrary vertical offset.
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Figure .16: High Field SR lineshapes and fits to the Modified London Model, for data at a
temperature of 30 K. The lineshapes have been plotted relative to the background field in Gauss
(1 G = 10~* T), with an arbitrary vertical offset.
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Figure .17: High Field pSR lineshapes and fits to the Modified London Model, for data at a
temperature of 50 K. The lineshapes have been plotted relative to the background field in Gauss
(1 G = 10~* T), with an arbitrary vertical offset.
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Figure .18: High Field pSR lineshapes and fits to the Modified London Model, for data at a
temperature of 70 K. The lineshapes have been plotted relative to the background field in Gauss
(1 G = 10~* T), with an arbitrary vertical offset.



