TRIUMF

Introduction to *uSR* elaxation elaxation Applied*

m

0

- The World's µSR Facilities
- Basic Techniques of µSR
- Applications of µSR
- Research Opportunities in µSR

*(to basic research in Materials Science and Chemistry)

Particle

Physics

Elementary

Jess H. Brewer UNBC, 26 March 2004

Visit our Web site! http://musr.org

Where in the World is μ SR?

Pion Decay: $\pi^{t} \rightarrow \mu^{t} + \nu_{\mu}$

A pion **stops** in the "skin" of the primary production target. It has zero linear momentum and zero angular momentum.

Conservation of Linear Momentum: The μ^+ is emitted with momentum equal and opposite to that of the ν_{μ} .

Conservation of Angular Momentum: μ^+ and ν_{μ} have equal and opposite spin.

Weak Interaction: Only "left-handed" ν_{μ} are created.

Thus the emerging μ^+ has its spin pointing *antiparallel* to its momentum direction.

μ⁺ Decay Asymmetry

Angular distribution of positrons from μ^+ decay. The asymmetry is a = 1/3 when all positron energies are detected with equal probability.

TIME (microsec)

Magnetic Field Distribution of a Vortex Lattice

P(H_{int})

Motion of Muon Spins in Static Local Fields:

(a) All muons "see" same field B: \longrightarrow for $B \parallel S_{\mu}$ nothing happens

$$\begin{split} \omega_{\mu} &= 2\pi \gamma_{\mu} |\mathbf{B}| & \text{for } \mathbf{B} \perp \mathbf{S}_{\mu} & \text{Larmor} \\ \gamma_{\mu} &= 135.5 \text{ MHz/T} & \text{precession:} & \boldsymbol{\omega}_{\mu} \end{split}$$

(b) All muons "see" same |B| but random direction:

2/3 of S_{μ} precesses at ω_{μ} 1/3 of S_{μ} stays constant

(c) Local field **B** random in both magnitude and direction:

All do not return to the same orientation at the same time (dephasing) $\Rightarrow S_{\mu}$ "relaxes" as $G_{zz}(t)$ [Kubo & Toyabe, 1960's]

Antiferromagnetism in $YBa_2Cu_3O_{6.0}$

1164: GE on MBd2Cu3O6.0 ZF d___S 15.0(2)K [1 vs 2] ASY

1989

Oxygen Formula Content "x"

Motion of Muon Spins in Static Local Fields:

(a) All muons "see" same field B: \longrightarrow for $B \parallel S_{\mu}$ nothing happens

$$\begin{split} \omega_{\mu} &= 2\pi \gamma_{\mu} |\mathbf{B}| & \text{for } \mathbf{B} \perp \mathbf{S}_{\mu} & \text{Larmor} \\ \gamma_{\mu} &= 135.5 \text{ MHz/T} & \text{precession:} & \boldsymbol{\omega}_{\mu} \end{split}$$

(b) All muons "see" same |B| but random direction:

2/3 of S_{μ} precesses at ω_{μ} 1/3 of S_{μ} stays constant

(c) Local field **B** random in both magnitude and direction:

All do not return to the same orientation at the same time (dephasing) $\Rightarrow S_{\mu}$ "relaxes" as $G_{zz}(t)$ [Kubo & Toyabe, 1960's]

ZF-μ⁺SR: Kubo-Toyabe Relaxation due to Nuclear **Dipolar Fields** Hayano, Uemura et al., 1978

Sonier *et al.*, Science 292, 1692 (2001)

"Extra" Magnetism at low T in $yBa_2Cu_3O_{6.95}$

"Themes" in μ^+ SR

Muonium as light Hydrogen(Mu = μ^+e^-)(H = p^+e^-)

- Mu vs. H atom Chemistry:
- gases, liquids & solids
- Best test of reaction rate theories.
- Study "unobservable" H atom rxns.
- Discover new radical species.
- Mu vs. H in Semiconductors:
- Until recently, $\mu^+SR \rightarrow \text{only}$ data on metastable H states in semiconductors!

The Muon as a Probe

- Probing Magnetism: unequaled sensitivity
 - Local fields: electronic structure; ordering
 - Dynamics: electronic, nuclear spins
- Probing Superconductivity: (esp. HT_cSC)
- Coexistence of SC & Magnetism
- Magnetic Penetration Depth λ
- Coherence Length ξ

• Quantum Diffusion: μ^+ in metals (compare H⁺); Mu in nonmetals (compare H).

End of Introduction!

Ask Questions? Take a break?

Vote on Part II:

- (1) μSR
- (2) TF- $\mu^{\dagger}SR$ in Superconductors: Vortex Lattice
- (3) $ZF \mu^{\dagger}SR$ in Superconductors: Magnetism
- (4) μ^+ and Muonium States in Nonmetals
- (5) Nothing (end early)